
P L A N N I N G W I T H D I F F E R E N T R E P R E S E N TAT I O N S

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie
vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

augusto blaas correa

Basel, 2024

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

https://edoc.unibas.ch/

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Erstbetreuer: Prof. Dr. Malte Helmert, Universität Basel

Zweitbetreuer: Prof. Dr. Ivan Dokmanić, Universität Basel

Externer Experte: Prof. Dr. Torsten Schaub, Universität Potsdam

Basel, den 17.09.2024

Prof. Dr. Marcel Mayor
Universität Basel, Dekan

To my father.

So in the future, the sister of the past,
I may see myself as I sit here now
but by reflection from that which then
I shall be.

— James Joyce, Ulysses

A B S T R A C T

Classical planning tasks are represented using a logical language.
It is common to use a first-order representation, as this makes the
description of the tasks more compact. Planners have long relied on
translating these first-order representations into propositional ones in
a process called grounding. Earlier work showed that grounding can
improve the performance of classical planners. But this can also lead
to exponentially larger encodings, and tasks with short plans become
intractable simply because of the size of their representation.

In this thesis, we focus on lifted planning, which operates directly
on the first-order representation. This bypasses the need for ground-
ing, avoiding its computational overhead. We show how to build a
lifted planner, called Powerlifted, that uses different techniques from
database theory and logic programming to achieve state-of-the-art per-
formance. First, we show how to perform a state-space search over the
lifted representation. We address the lifted successor generation prob-
lem and show that this is equivalent to solving conjunctive queries.
By exploiting the acyclicity of conjunctive queries, Powerlifted can
generate successors efficiently in many domains. Second, we show
how to use Datalog to compute delete-relaxation heuristics, such as the
additive and the FF heuristics, directly over the lifted representation.
Finally, we show how to translate other state-of-the-art techniques,
such as preferred operators and width search, from the ground to the
lifted setting.

We then show that some ideas from our work on lifted planning can
be carried over to the ground setting. Using techniques implemented
in Powerlifted, we show how to improve the grounding algorithms
commonly used by classical planners. This is significant, as grounding
is a crucial phase of most classical planners developed over the last
two decades. Our new algorithm uses the grounding via solving
paradigm from answer set programming, in which the grounding
of a problem is decoupled into several logic programs, which must
be solved individually to produce the propositional representation.
In our experiments, our method outperforms other commonly used
grounders from the literature.

Finally, we propose an extension to the classical planning formalism
allowing for object creation within action effects. In practice, we show
that Powerlifted can support this fragment almost effortlessly and that
lifted planners, in general, seem to be a good fit for planning with
object creation. Our experimental results show that object creation does
not add overhead to Powerlifted while allowing for more expressive
planning formalisms.

vii

A C K N O W L E D G M E N T S

It is a mystery to me how people manage to write acknowledgments
in fewer than 100 pages. My impulse is to acknowledge every single
living being that my eyes have met since the start of my Ph.D. By the
eighth paragraph, I could picture myself citing my neighbor’s parrot.
But it turns out that society becomes judgmental when you thank your
former plumber or the bus driver who helped bring you home from
Ikea on that Thursday evening. So we will keep it short.

I contacted Malte for the first time in 2016. I had just received a
scholarship to study in Munich, and I asked Malte if I could do some
sort of research visit while I was in Germany. Malte replied that I
was welcome to visit the group for a month. One year later, the visit
took place, and, suddenly, the only thing that mattered to me was to
find a way to come back to Basel, to do my Master’s and Ph.D. with
the AI group. It was not easy (the number of cyclic dependencies in
any immigration process tends to infinity) but Malte – together with
Heike Freiberger and Yvonne Walser – solved all bureaucratic matters
and allowed me to come here. I’ve never seen an advisor put so much
effort into helping a student join his group, particularly an undergrad
student. But Malte did that. After I joined the group, he continued to
support me, but now also scientifically. Malte never spared any effort
to answer my questions or to fuel my overambitious ideas. And for all
of this, I will always be grateful. Malte: I am not sure if you are aware,
but you changed my life. Thank you!

I also want to thank Torsten Schaub for agreeing to join my thesis
committee as the external examiner, despite my complicated time
constraints and deadlines. Moreover, in 2022, Torsten (together with
Roland Kaminski, Javier Romero, and Klaus Strauch) suggested us to
contact Stefan Woltran on how to use tree decompositions to ground
planning tasks. The rest of the story is told in Chapter 6.

There are three people who worked with me in Basel who deserve
more credit for this thesis than meets the eye: Florian Pommerening,
Guillem Francès, and Jendrik Seipp. When I first visited the AI group,
randomness had me working with Florian. This is the closest I’ve ever
been to winning the lottery. Florian taught me to write papers, to
read papers, to run experiments, to rerun experiments, and all the
rest. Guillem only joined the group later, when I was also starting
as a Master’s student. I don’t know why, but once Guillem asked
if I wanted to read a paper on description logic and discuss it with
him. At that time, I didn’t know how to say no, so I accepted the
offer. Fast-forward almost 7 years, and that first discussion sparked
my interest in knowledge representation for planning, which turned

ix

into this thesis. Guillem is, to this day, one of my best friends. With
Jendrik, on the other hand, it took a while until I got to know him.
Jendrik always seemed more sophisticated and cooler than the rest,
so I was scared he would find me underwhelming. But Jendrik is
actually one of the finest lads out there, always smiling and telling
good jokes. As we started to work together, Jendrik quickly became
one of my favorite co-authors. Every time I talk to him, I feel as if I
learned twenty new things about programming, grammar, music, or
whatever. To all three of you: thank you very much!

Everyone in the AI group was always welcoming to me. When I
started as a Hiwi, I thought that everyone in the group was smarter
than me. Now, years later, I continue thinking that. Many thanks to
my colleagues Clemens Büchner, Remo Christen, Simon Dold, Salomé
Eriksson, Claudia Grundke, Florian Pommerening, Gabriele Röger,
Tanja Schindler, and David Speck, and to my former colleagues Liat
Cohen, Patrick Ferber, Guillem Francès, Cedric Geissmann, Manuel
Heusner, Thomas Keller, Jendrik Seipp, and Silvan Sievers.

I was also fortunate to visit two great groups during my Ph.D. and
to make friends along the way. My first stop was in Vienna, where
I worked with Davide Mario Longo and Markus Hecher. Our work
turned into a paper, which then turned into a planner that won the IPC
(also with Guillem and Jendrik). Davide and Markus were also crucial
in this thesis, answering my silly questions about logic programming
and databases. Markus and Davide (and Sandra), I have no words to
express my gratitude for your help.

My second stop was in Oxford, to work with Giuseppe De Giacomo.
I was lucky to be welcomed by Antonio Di Stasio and Shufang Zhu,
who helped me love and hate Oxford. There, I also had the chance
to meet Sasha Rubin, who became a dear friend of mine. My time in
Oxford contains some of the best months of my Ph.D., and I remem-
ber it fondly. Giuseppe, Antonio, Shufang, and Sasha, thank you for
everything.

While I was writing this thesis, I was often impressed by the willing-
ness and commitment of busy people to spend their time proofreading
my writing. I want to thank all those who wasted brain cells decipher-
ing earlier portions of this work: Clemens Büchner, Remo Christen,
Guillem Francès, Markus Hecher, Davide Mario Longo, André G.
Pereira, Jendrik Seipp, David Speck, and Sasha Rubin. In particular, a
special thanks to Florian Pommerening, who proofread many chapters
of this thesis, and to Przemysław Wałęga who took his time to suggest
me some seminal papers in database theory.

Basel is not the most exciting city in the world, but I was blessed
to find many friends here who made it lively. A huge thanks to
Selaudin Agolli, Nadine Engeler, Mason Minot, Jonas H. Müller Ko-
rndörfer, Marjorie Pacheco Moraes, Marcelo Pereira, Agni Ramadani,
Alex Rovner, Upnishad Sharma, and many others. And, around Eu-

x

rope, I was equally successful with my endeavor of finding good
company. Many thanks to Vinícius Allegrini, Thiago Bell, João Bittar,
Thomas Brunner, Michael Bernreiter, Philipp Foth, Camila Gehling,
Elma Kablarevic, Sanja Lukumbuzya, Anna Rapberger, and Carmel
Saig.

Across the Atlantic, there are also dozens of people who influenced
my journey to get here. Above all, I want to express my lasting grati-
tude to Marcus Ritt and André G. Pereira: you are by far the two most
influential people in my life, and I see your fingerprints everywhere I
look. I also want to extend this acknowledgment to other three other
Brazilians who embraced me during these years: Alex Gliesch, Felipe
Meneguzzi, and Tadeu Zubaran.

Last, but not least, I would like to thank my father, César, and my
stepmother, Kelly, for their endless support, and for making me a fan
of Grêmio.

To all of you: thank you!

xi

C O N T E N T S

1 Introduction 1

1.1 Contributions & Structure 4

1.2 Experimental Setup . 5

1.3 Publications . 6

2 Background 9

2.1 Conventions . 9

2.2 Logic Programming . 10

2.3 Classical Planning . 12

i Lifted Planning
3 Lifted Successor Generation 21

3.1 Conjunctive Queries . 22

3.2 Relational Algebra Redux 24

3.3 Evaluating Conjunctive Queries in Practice 25

3.4 A Database Perspective of Classical Planning 29

3.5 Experimental Results . 32

3.6 Summary . 42

4 Lifted Delete-Relaxation Heuristics 47

4.1 Delete-Relaxation Heuristics over Ground Tasks 48

4.2 Lifted Relaxed Reachability 50

4.3 Datalog-Based Heuristics 53

4.4 Problems with our Approach 56

4.5 Annotated Datalog . 57

4.6 Transformations of Annotated Datalog 60

4.7 Experimental Results . 64

4.8 Summary . 73

5 Lifted Width Search 77

5.1 Best-First Width Search 78

5.2 Balancing Exploration and Exploitation 79

5.3 Implementation . 81

5.4 Experiments . 82

5.5 Summary . 88

ii Propositional Planning
6 Grounding Planning Tasks 93

6.1 Baseline: Fast Downward’s Grounder 94

6.2 A First Detour: Tree Decompositions 98

6.3 Grounding Using Structural Decompositions 99

6.4 Avoiding to Ground Actions 101

6.5 A Second Detour: Answer Set Programming 103

6.6 Grounding via Iterated Solving 106

6.7 More Informed Logic Programs 111

xiii

xiv contents

6.8 Solving Planning Tasks 112

6.9 Summary . 113

iii Planning with Object Creation
7 Planning with Object Creation 119

7.1 Details of First-Order Logic 120

7.2 Planning Formalism . 120

7.3 Decidability Results . 125

7.4 Overall Procedure in Practice 134

7.5 Implementation . 136

7.6 Experimental Results . 137

7.7 Summary . 142

iv Conclusion
8 Conclusion 147

Appendix
a Computational Complexity Redux 153

Bibliography 157

1
I N T R O D U C T I O N

Imagine you want to travel somewhere for your summer holidays.
There is a lot to prepare before you can enjoy your time off. First,
where should you go? Somewhere close and cheap but not so exciting,
or somewhere more expensive that would be much more memorable?
Should you travel by plane or train? The plane is faster but airports
are time-consuming as well. And what should you pack? Depending
on the forecast, you can leave the raincoat at home and save some
space in your hand-luggage for a few more shirts, shorts, underwear,
and shoes. You definitely want to bring some ties, as ties are needed
at all times (Wodehouse, 1930). You also want to bring some books,
toiletries, and other smaller things. But do you have space for all that?
Should you bring a larger suitcase?

The number of choices in this simple scenario is enough to give us
a headache. Luckily, we can automate these decisions using automated
planning. In short, automated planning is the problem of finding a
sequence of actions — what to pack or how to travel — that achieves a
desired goal — reach your holiday destination on time, within budget,
and without forgetting anything essential.

An automated planning task is usually defined as follows: given
an initial state of your world, a goal, and actions that modify the
world, find a sequence of actions that achieves the goal. This definition
is generic enough to represent different families of problems, e.g.,
Rubik’s cube, transportation problems, or simulation of chemical
reactions.

An advantage of automated planning is that using a specific represen-
tation for all these problems allows us to implement domain-independent
planners. This means that a planner (i.e., an algorithm designed to
solve planning tasks) is not focused on solving a single problem. It can
solve any problem that can be encoded in a formalism that is accepted
as input by the planner. These formalisms are usually defined using
logic.

For example, consider the Blocks World domain, where blocks are
arbitrarily stacked up on a table, forming different towers. The goal is
to rearrange the blocks in some specific configuration by moving one
at a time. Figure 1.1 displays the initial state (1.1a), the goal condition
(1.1b), and a state satisfying the goal — a goal state (1.1c). The only

1

2 introduction

D

C

A

B

(a) Initial state.

C

B

(b) Goal of the
task.

D

C

A

B

(c) Goal state.

Figure 1.1: Examples of initial state, goal, and a goal state for a Blocksworld
task with four blocks.

action in this domain is to pick a block on top of a tower and place it
on top of another tower or on the table.

The missing piece is how to represent the actions that modify our
state. The straightforward approach is to enumerate every single
possible action:

move A from the table to B

move A from the table to C

move A from the table to D

move A from B to C

move A from B to D

move A from B to the table

move A from C to B

move A from C to D

move A from C to the table

move A from D to B

move A from D to C

move A from D to the table

move B from the table to A
...

move D from C to B

move D from C to the table .

There are 48 actions in total. Clearly, most of these actions are not
applicable to our initial state. For example, we cannot move A from
the table to the top of D : we need to remove B from the top of A

first. On the flip side, we can achieve our goal with a plan containing a
single action: move C from the top of D to the top of B . Only one
of the 48 actions is necessary to solve this task.

introduction 3

For a task with n blocks, we have O(n3) actions. If n = 1 000, then
we have approximately 1 000 000 000 actions. It is clear that the total
number of actions becomes huge as n increases. Moreover, there is
always a plan using only 2n actions: move every block to the table
(this takes at most n actions) and re-stack them according to the goal
(at most n actions). In our case with 1 000 blocks, this means that the
shortest solution would always use at most 0.000001% of the given
actions. Just storing the actions could be more costly than solving the
problem itself.

If we look more closely at our problem, however, we can see that
all actions above follow the same schema: pick a block X — which
can be any of the four blocks — from the top of another block Y or
the table and place it either on the table or on top of a third block
Z . This allows us to represent action at a higher level, simply based

on their schemas:

move X from Y to Z .

The “blocks” X , Y , and Z are called variables and work as place-
holders for the concrete objects A , B , C , D and the table .

With this new action representation, it is no longer enough to simply
find a sequence of actions. The planner now must also infer which blocks
to use at each step of the plan. For example, our plan above (moving C
from D to the top of B) can be found using the following mapping:

X → C , Y → D , Z → B

The second representation — called a lifted representation — is much
more compact than the first one — called a propositional or ground
representation. But there is no free lunch: while this compactness
makes the problem description easier, it makes the job of the planner
harder. The additional effort of inferring which objects to use at each
step can become a new bottleneck for the planner. Pragmatically
speaking, different representations always lead to different advantages
and disadvantages.

In planning, problems are usually defined using a lifted representa-
tion. Most planners then convert it into a propositional representation
by grounding the task. In larger problems, though, grounding becomes
very expensive. This limits the reach of planners, and consequently
the applicability of planning to larger problems.

In this thesis, we study how to plan with different representations.
In particular, all the representations we use can be characterized logi-
cally. Our first contribution is to show how to implement an efficient
planner that works on the lifted representation directly. We focus
particularly on how to implement lifted heuristic search algorithms.
By using techniques from database theory, knowledge representation,
and other areas, we build an efficient and competitive lifted planner.
Our new lifted planner, called Powerlifted, is the first lifted planner

4 introduction

to be competitive with ground planners — those grounding the tasks
beforehand. Powerlifted includes different state-of-the-art heuristics
(e.g., Bonet and Geffner, 2001) and specialized methods for successor
generation based on structural decompositions (Yannakakis, 1981).

Playing devil’s advocate, we also show that many of the techniques
used in Powerlifted can be used to ground planning tasks. Based on
one of the most popular grounders for planning (Helmert, 2009), we
implement a new grounder that uses logic programming. We show
how to optimize this grounder by exploiting different techniques, such
as rule decomposition (Bichler et al., 2016; Bliem et al., 2020) and
grounding via solving (Besin et al., 2022).

Finally, we study an important extension to the traditional planning
formalism: object creation. In classical planning problems, objects are
defined at the beginning, and the set of objects is immutable. In this
extension, actions can create new objects. This brings us to a much more
powerful fragment of planning. We show that Powerlifted can be easily
adapted to work on this new flavor of planning. Planning with object
creation presents several challenges but it also offers new insights.
This new area is promising, as it expands the scope of problems that
planning can address.

1.1 contributions & structure

This structure of this thesis is as follows:

• Chapter 2 provides the background knowledge necessary for the
thesis. It formalizes the notion of planning tasks and heuristic
search, and introduces necessary concepts from logic program-
ming. At the end, we provide a brief summary of earlier planning
techniques.

• Part i studies how to implement an efficient lifted planner. Our
first topic is how to generate successor states during search. We
show that there is a direct connection between this problem
and the problem of conjunctive query answering (Chandra and
Merlin, 1977; Codd, 1970) in database theory. With this con-
nection, we implement a lifted successor generator exploiting
structural decompositions of conjunctive queries (Gottlob et al.,
2002; Yannakakis, 1981).

We also show how to compute delete-relaxation heuristics (Bonet
and Geffner, 2001) over lifted representations. This time, we ex-
ploit the connection between delete-relaxation heuristics and
logic programming. Using Datalog, we implement efficient lifted
versions of hadd, hmax, and hFF (Bonet and Geffner, 2001; Hoff-
mann and Nebel, 2001). Last, we study how to extend other tech-
niques from ground planning — such as width-search (Lipovet-
zky and Geffner, 2012) — to the lifted setting.

1.2 experimental setup 5

• In Part ii, we are interested in bringing the conclusions from
Part i to the context of grounding. More specifically, we study the
grounding algorithms for planning that rely on logic program-
ming (Helmert, 2009). We combine the structural decomposition
techniques from the lifted successor generation together with the
techniques used to compute lifted delete-relaxation heuristics,
and use them to ground the planning tasks (Bichler et al., 2016).
Our new grounder uses the grounding via solving (Besin et al.,
2022) approach from answer set programming: in the first step,
we overapproximate a set of reachable atoms (but not the actions);
then, we use this set to finally extract the set of ground actions.
This two-step approach slows down the grounder but has the
merit of consuming less memory. Overall, our new grounder
can ground more tasks than previous implementations from the
literature.

• Part iii discusses object creation. We extend our basic classical
planning formalism to handle problems where new objects are
introduced as an effect of actions. Our extension builds on top of
the lifted planning formalism, and fits well with the algorithms
developed in Part i. We explain how to extend the basic version
of Powerlifted to deal with object creation efficiently.

From a theoretical perspective, we prove that this fragment is
semi-decidable. If a plan exists for such a task, Powerlifted is
guaranteed to find it. From the practical side, we study some
design choices to improve Powerlifted in the context of object
creation. In more detail, we explain possible adaptations of width
search for this extension, and present potential improvements
and research directions.

• Part iv summarizes the main contributions of this thesis, poses
some unanswered questions, and proposes a few ideas of future
work.

1.2 experimental setup

We use the same experimental setup throughout this thesis. All ex-
periments were run on an Intel Xeon Silver 4114 processor running
at 2.2 GHz with maximum runtime of 30 minutes and a maximum
memory of 16 GiB. Furthermore, we always use the Downward Lab
toolkit (Seipp et al., 2017) in our tests. The source code and scripts
used are publicly available online (Corrêa, 2024).

Planners always receive a PDDL (Planning Domain Definition Lan-
guage) as input (Haslum et al., 2019; McDermott et al., 1998).1 We
benchmark our techniques on two sets of problems. The first set, called

1 However, at later parts, the PDDL language will be extended.

6 introduction

the IPC set, contains 1001 STRIPS tasks (properly defined in Chapter 2)
from 29 different domains used in the first nine editions of the IPC.
The second set, called the HTG set, contains 862 hard-to-ground (HTG)
tasks over 8 different domains. This set contains problems that cannot
be easily converted into propositional tasks (i.e., ground), and so give
more insight into the capabilities of lifted planners and grounding
algorithms.

The HTG set is a merge of two different sets used in the literature
(Corrêa et al., 2020; Lauer et al., 2021), and has been used as the de facto
standard to evaluate lifted planners (Horčík and Fišer, 2021; Ståhlberg,
2023). When reporting experimental results, we usually focus on this
set.

Our general metrics of performance are time, memory, and coverage
(total number of solved tasks). These are our main criteria when
comparing different implementations (e.g., two different planners).
In more specific scenarios – such as when we compare two search
algorithms implemented in the same planner – we rely on more fine-
grained metrics. For heuristic search algorithms in particular, we often
compare the number of expanded states and plan length. The first
gives an idea of how informed the search is; the second estimates the
quality of the solution.

1.3 publications

Most of the content in this thesis has been previously published in
proceedings of academic conferences. The core ideas can be found in
the following seven papers:

(i) Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and
Guillem Francès (2020). “Lifted Successor Generation using
Query Optimization Techniques.” In Proc. ICAPS 2020. AAAI
Press, pp. 80–89.

(ii) Augusto B. Corrêa, Guillem Francès, Florian Pommerening, and
Malte Helmert (2021). “Delete-Relaxation Heuristics for Lifted
Classical Planning.” In Proc. ICAPS 2021. AAAI Press, pp. 94–
102.

(iii) Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and
Guillem Francès (2022). “The FF Heuristic for Lifted Classical
Planning.” In Proc. AAAI 2022. AAAI Press, pp. 9716–9723.

(iv) Augusto B. Corrêa and Jendrik Seipp (2022). “Best-First Width
Search for Lifted Classical Planning.” In Proc. ICAPS 2022. AAAI
Press, pp. 11–15.

(v) Augusto B. Corrêa, Markus Hecher, Malte Helmert, Davide
Mario Longo, Florian Pommerening, and Stefan Woltran (2023).

1.3 publications 7

“Grounding Planning Tasks Using Tree Decompositions and Iter-
ated Solving.” In Proc. ICAPS 2023. AAAI Press, pp. 100–108.
Runner Up, Best Student Paper Award at ICAPS 2023.

(vi) Augusto B. Corrêa, Giuseppe De Giacomo, Malte Helmert, and
Sasha Rubin (2024). “Planning with Object Creation.” In Proc.
ICAPS 2024. AAAI Press, pp. 104–113.

(vii) Augusto B. Corrêa, and Giuseppe De Giacomo (2024). “Lifted
Planning: Recent Advances in Planning Using First-Order Rep-
resentations.” In Proc. IJCAI 2024, to appear.

Paper (i) introduces Powerlifted, the first competitive lifted planner,
and shows how to generate successor states in a lifted state-space
search (Chapter 3). Papers (ii) and (iii) show how to compute delete-
relaxation heuristics over the lifted representation (Chapter 4). Both
of them use Datalog programs to do so. Paper (iv) studies how to
efficiently implement width search (Lipovetzky and Geffner, 2012;
Lipovetzky and Geffner, 2017) and other algorithms (Röger and
Helmert, 2010) in the lifted setting (Chapter 5). Paper (v) goes in
the opposite direction: it shows how to use the insights in lifted plan-
ning to optimize the grounding of planning tasks (Chapter 6). Paper
(vi) introduces an extension of PDDL where new objects can be con-
structed as effect of an action (Chapter 7). Finally, paper (vii) surveys
the main lifted planning techniques introduced in the last ten years
(content spread through several chapters).

The techniques presented in these papers were combined into three
different planners that participated in the IPC 2023:

• Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide
Mario Longo and Jendrik Seipp (2023). “The Powerlifted Plan-
ning System in the IPC 2023.” In Tenth International Planning
Competition (IPC 2023), Deterministic Part.

• Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide
Mario Longo and Jendrik Seipp (2023). “Scorpion Maidu: Width
Search in the Scorpion Planning System.” In Tenth International
Planning Competition (IPC 2023), Deterministic Part.
Winner, Deterministic Sequential Satisficing Track.

• Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide
Mario Longo and Jendrik Seipp (2023). “Levitron: Combining
Ground and Lifted Planning.” In Tenth International Planning
Competition (IPC 2023), Deterministic Part.
Winner, Deterministic Sequential Satisficing Track.

Scorpion Maidu and Levitron were the two co-joint winners of the
satisficing track of the IPC 2023. Scorpion Maidu is a ground planner
built on top of Scorpion (Seipp, 2018) but adds large collection of width

8 introduction

search algorithms, based on the ideas of paper (iv) above. Levitron is
a hybrid planner that uses Powerlifted on tasks that it cannot ground
within the available resources, and uses Scorpion Maidu otherwise.

Apart from the aforementioned papers and planners, the author
contributed to the following works during his doctoral studies:

• Rik de Graaff, Augusto B. Corrêa and Florian Pommerening
(2021). “Concept Languages as Expert Input for Generalized
Planning: Preliminary Results.” In ICAPS 2021 Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS
2021).

• Malte Helmert, Silvan Sievers, Alexander Rovner and Augusto
B. Corrêa (2022). “On the Complexity of Heuristic Synthesis for
Satisficing Classical Planning: Potential Heuristics and Beyond”.
In Proc. ICAPS 2022. AAAI Press, pp. 124–133.

• Mohammad Abdulaziz, Florian Pommerening and Augusto B.
Corrêa (2022). “Mechanically Proving Guarantees of Generalized
Heuristics: First Results and Ongoing Work.” In Proc. GenPlan
2022.

• Lucas Galery Käser, Clemens Büchner, Augusto B. Corrêa, Flo-
rian Pommerening and Gabriele Röger (2022). “Machetli: Simpli-
fying Input Files for Debugging.” In System Demonstrations at
ICAPS 2022.
Best System Demonstration Award at ICAPS 2022.

• Augusto B. Corrêa, Clemens Büchner and Remo Christen (2023).
“Zero-Knowledge Proofs for Classical Planning Problems.” In
Proc. AAAI 2023. AAAI press, pp. 11955–11962.

• Clemens Büchner, Remo Christen, Augusto B. Corrêa, Salomé
Eriksson, Patrick Ferber, Jendrik Seipp and Silvan Sievers (2023).
“Fast Downward Stone Soup 2023.” In Tenth International Plan-
ning Competition (IPC 2023), Deterministic Part.
Runner-up, Deterministic Sequential Satisficing and Agile
Tracks.

• Daniel Doebber, André Grahl Pereira and Augusto B. Corrêa
(2023). “OpCount4Sat: Operator Counting Heuristics for Satis-
ficing Planning.” In Tenth International Planning Competition
(IPC 2023), Deterministic Part.

• Augusto B. Corrêa and Jendrik Seipp (2024). “Consolidating
LAMA with Best-First Width Search.” In ICAPS 2024 Workshop
on Heuristics and Search for Domain-independent Planning
(HSDIP 2024).

These works do not fit the main arc of the thesis, and will not be
discussed in detail here.

2
B A C K G R O U N D

In this chapter, we formalize the basic concepts used throughout
the thesis. Most of the content is related to logic programming and
classical planning.

We assume basic knowledge about logic and computational com-
plexity. In particular, we assume familiarity the basic concepts of
first-order logic, although we briefly discuss some of them below to
introduce notation and refresh some parts. For a thorough discussion
on logic, we refer to the textbook by Ebbinghaus et al. (1994).

Appendix A includes a brief overview of the computational com-
plexity concepts needed for this thesis. If the terms P, NP, PSPACE,
EXPTIME, and EXPSPACE are familiar to the reader, Appendix A can
be safely skipped.

2.1 conventions

Throughout this thesis, we assume that logical languages (i.e., conjunc-
tive queries, logic programs, and planning tasks) are defined using
a function-free logical vocabulary L over an infinite set V of variables, a variables

finite set of C constants, and a set P of predicate symbols. constants
predicate symbolsTo denote variables, we use capital letters (X, Y, Z, . . .) possibly

indexed (X1, Y3, Z42, . . .). Constants are denoted by lowercase upright
strings (a, b, c, truck, . . .). Predicate symbols are strings written also in
lowercase, but are italicized (p, q, move, . . .). A term is either a variable term

or a constant. We use boldface symbols (T , X3, . . .) to denote tuples of
terms.

An atom p(T) is composed of a predicate symbol p ∈ P and a atom

k-tuple of terms T = ⟨T1, . . . , Tar(p)⟩, where ar(p) is the arity of p; for
clarity, we sometimes write p/k to define a predicate symbol p with
ar(p) = k. The set of variables in T is denoted as vars(T). With some
abuse of notation, we use set-theoretical symbols with terms, although
they are ordered sequences.

An atom p(T) is called a ground atom iff vars(T) = ∅. ground atom

Given a (non-ground) atom p(T), we can ground this atom by replac-
ing all its variables vars(T) with constants in C. Formally, a substitution
function σ (partial or total) maps variables in V to constants in C. With substitution function

some abuse of notation, we extend σ to atoms: we write σ(p(X, Y))

9

10 background

to indicate p(σ(X), σ(Y)). We further extend it to sets of atoms, e.g.,
σ({p(X), p(Y)}) := {p(σ(X)), p(σ(Y))}. The grounding of an atom
(or set of atoms) is also called an instantiation.instantiation

2.2 logic programming

A logic program is a set of rules of the formlogic program

rules
h1 ∨ . . . ∨ hk ← p1, . . . , pj,¬n1, . . . ,¬nm.

where hi, pi and ni are all atoms. Given a rule r, its head is the sethead

denoted by head(r) = {h1, . . . , hk}; the body of r is the set denotedbody

by body(r) = {p1, . . . , pj, n1, . . . , nm}. Furthermore, the set of positive
body atoms is denoted by body+(r) = {p1, . . . , pj}, while the set of
negative body atoms is denoted by body−(r) = {n1, . . . , nm}. The set
of variables appearing in r is denoted vars(r). If vars(r) = ∅, then r is
a ground rule.

If body(r) = ∅ and head(r) is a ground atom, then r is called a fact.fact

It is common to explicitly distinguish facts from other rules when
defining logic programs: for convenience, we denote logic programs as
a pair L = ⟨F ,R⟩ where F is a finite set of facts, and R is a finite set
of (non-fact) rules. When writing down logic programs, we typically
write them as a list. The set of facts F is always given first, and we
omit the symbol← when enumerating them.

Example 2.1 Consider the following logic program L

pet(bob).

pet(jack).

fish(jack).

dog(X) ∨ cat(X)← pet(X),¬fish(X).

with three facts and a single rule, which we denote by r. The head of
r is {dog(X), cat(X)}, the body of r is {pet(X),¬fish(X)}, body+(r) =

{dog(X)}, and body−(r) = {fish(X)}.
This program declaratively represents that, for any X, if X is a pet but not

a fish, then X is either a dog or a cat.

A logic program is ground if all its rules are ground. A predicate
symbol (from the underlying logical vocabulary) is extensional if itextensional predicate

occurs in rule bodies but never in a rule head.1 In the rest of the thesis,
we only consider safe rules, where variables occurring in the head alsosafe rule

occur in the body.
In most of this thesis, however, it is sufficient to consider a simpler

fragment of logic programs: Datalog programs. A Datalog programDatalog

1 In the planning literature, extensional predicates are sometimes called “static”.

2.2 logic programming 11

D = ⟨F ,R⟩ is a logic program where all rules r ∈ R have the form

h← p1, . . . , pj.

i.e., have no negative atoms in the body and exactly one atom in the
head. In Part ii, we use more powerful logic programs, but we stick
with Datalog here to avoid overcomplicating the definitions now.

Example 2.2 Consider the following Datalog program D:

parent(alice, charlie).

parent(charlie, dave).

parent(charlie, eve).

ancestor(X, Y)← parent(X, Y).

ancestor(X, Z)← parent(X, Y), ancestor(Y, Z).

It encodes the ancestry relation based on parenthood. Alice is a parent of
Charlie, and Charlie is a parent of both Dave and Eve. Hence, both Alice and
Charlie are ancestors of Dave and Eve.

The Herbrand base H(D) of a Datalog program D is the set of all Herbrand base

ground atoms obtained by instantiating predicates from P with con-
stants in C. An interpretation I ⊆ H(D) is a subset of atoms. We say interpretation

that a ground atom a is true under I if a ∈ I , and it is false otherwise.
Let Ground(r) be the set of all groundings of a rule r ∈ R (i.e., all

possible substitutions of variables in r with constants in C), and let
Ground(D) be the grounding of all rules of D. An interpretation I
satisfies the ground rule r in Ground(D) if body(r) is true under I . An
interpretation is a (Herbrand) model iff, for every r ∈ Ground(D) that model

is satisfied by I , the head head(r) is also true under I .
Each Datalog program has a unique minimal modelM (in number

of atoms), sometimes referred to as the canonical model. This canonical canonical model

model is usually computed using a seminaive evaluation (Abiteboul seminaive evaluation

et al., 1995, Ch. 13). This is a bottom-up approach that iteratively
derives new atoms from previously derived ones. First, it tracks in
which iteration each atom was derived. In each iteration, the algorithm
unifies rules with atoms derived from previous iterations to derive
new ones. To avoid duplicates and guarantee termination, the sem-
inaive evaluation algorithm enforces that at least one atom derived
at iteration i must be used when unifying rules at iteration i + 1. All
facts in F are derived in iteration 1. The algorithm iteratively derives
more atoms until a fix-point is reached (i.e., no new atom is derived
during an iteration).

12 background

Example 2.3 The canonical modelM of the Datalog program D from the
previous example is

M := {parent(alice, charlie), parent(charlie, dave),

parent(charlie, eve), ancestor(alice, charlie),

ancestor(charlie, dave), ancestor(charlie, eve),

ancestor(alice, dave), ancestor(alice, eve)}

For a given Datalog program D = ⟨F ,R⟩, deciding if an atom a is
in the modelM of D is EXPTIME-complete (Immerman, 1986; Vardi,
1982).2

2.3 classical planning

A planning task consists of the following: an initial state, a set of actions,
and a goal, all formally specified using some logic vocabulary. The ob-
jective of a planner is to synthesize a strategy/program — called a plan
— to fulfill the goal starting from the initial state. There are different
models of planning: single- or multi-agent; fully-observable or par-
tially observable states; deterministic, stochastic, or non-deterministic
actions; etc. Each combination of these properties leads to a different
variant, bringing us different difficulties and different algorithms.

In this work, we focus on the simplest flavor of planning, the classical
planning model: actions are deterministic and discrete, states are fully-
observable, and tasks only have one agent. To be less verbose, we refer
to this flavor simply as planning.

We consider planning tasks in STRIPS (Fikes and Nilsson, 1971)STRIPS

with inequalities. A planning task is a 5-tuple Π = ⟨P , C,A, I, G⟩
where

• P is the set of predicate symbols from our logical vocabulary;

• C is the set of constants from our logical vocabulary;

• A is a set of action schemas;

• I is the initial state;

• G is the goal.

We assume that the binary predicate symbol ̸= is always in P and
represents the inequality relation.

An action schema a ∈ A is a tuple a = ⟨pre(a), add(a), del(a), cost(a)⟩
where the precondition pre(a), the add list add(a), and the delete list del(a)precondition

add list
delete list

are sets of atoms, and cost(a) ∈N is the action cost. We use vars(a) for

action cost
the set of variables occurring in any atom of the precondition, add
list, and delete list. We sometimes refer to action effects, indicating the

effects
2 We consider the case of combined complexity: facts and rules are part of the input (i.e.,

not fixed in advance). If we assume that the rules are fixed, then deciding if a ∈ M
can be done in polynomial time (Immerman, 1986; Vardi, 1982).

2.3 classical planning 13

add list and the delete list of an action together. If vars(a) = ∅, we
call a a ground action and if all actions in a task are ground, we call the ground action

task a ground task. If the task is not ground, then it is a lifted task. In ground task

lifted taskmost chapter, action costs do not play a major role in our definitions
and contributions. When this is case, we define an action a simply as
a triple a = ⟨pre(a), add(a), del(a)⟩ to streamline notation. Whenever
we do not explicitly describe the cost of an action a, the reader may
assume that cost(a) = 1.

Given an action schema a ∈ A, we can ground a similarly as we
ground atoms. Let σ be a substitution function mapping vars(a) to C.
To produce a ground action, denoted as σ(a), we can simply apply
σ to the precondition, add list, and delete list of a. More formally,
σ(a) = ⟨σ(pre(a)), σ(add(a)), σ(del(a))⟩.

A state s is a set of ground atoms. A ground action a is applicable state
applicable actionin s if pre(a) ⊆ s. To accurately represent inequalities we assume for

this definition that all states implicitly contain c1 ̸= c2 for every pair
of distinct constants c1, c2 ∈ C. Applying action a in state s leads
to the successor state succ(s, a) = (s \ del(a)) ∪ add(a). A sequence of successor state

actions π = ⟨a1, . . . , an⟩ is applicable in a state s0 and has succ(s0, π) =

sn if there are states s1, . . . , sn−1 where ai is applicable in si−1 and
succ(si−1, ai) = si for all i ≤ n.

The initial state I of a task is a state and the goal G is a set of ground initial state
goalatoms. We call states s with G ⊆ s goal states. We want to find a plan,
plani.e., a sequence of ground actions π applicable in I such that succ(I, π)

is a goal state. Given a plan π = ⟨a1, . . . , an⟩, we define its cost as cost

cost(π) =
n

∑
i=1

cost(ai).

Example 2.4 Consider a simplified logistics task where a truck t starting at
some city a must reach city c. City a is adjacent (i.e., connected) to city b,
which in turn is adjacent to c. This problem can be encoded as a planning
task Π = ⟨P , C,A, I, G⟩ as follows:

P = {at/2, adj/2}
C = {a, b, c, t}
A = {drive(T, C1, C2)}
I = {adj(a, b), adj(b, a),

adj(b, c), adj(c, b),

at(t, a)}
G = {at(t, c)}.

The action schema drive(T, C1, C2) has the following precondition, add list,
and delete lists:

pre(drive(T, C1, C2)) = {at(T, C1), adj(C1, C2)}
add(drive(T, C1, C2)) = {at(T, C2)}
del(drive(T, C1, C2)) = {at(T, C1)}.

14 background

Other planning formalisms also define types for constants and re-
strict some variables, so they can only be instantiated with constants of
the correct type. It is common to compile type information away by in-
troducing unary type predicates type-T for each type T (e.g., Helmert,
2009). The initial state I is augmented with type-T(c) for all constants
c ∈ C of type T (using a default type for constants without a type).
Type information on action parameters can then be compiled away by
adding type predicates to the action’s precondition. We assume our
tasks contain such type predicates.

Planning tasks are usually encoded using PDDL (Haslum et al., 2019;
McDermott et al., 1998). It is the de facto standard in classical planning,
and it is used in the International Planning Competition (IPC). PDDL
problems use a first-order representation and our planning formalism
above can easily be represented in PDDL. However, it is important to
also note that PDDL supports much more expressive features as well.
Throughout the thesis, we introduce planning problems formally as
above, and we only mention PDDL when necessary; it is not required
to know PDDL syntax to understand the rest of this text.

An important fragment of classical planning is delete-free classical
planning. A planning task Π is called delete-free if del(a) = ∅ fordelete-free

all action schemas a of Π. It is possible also to relax any planning
task into a delete-free one, just by redefining its delete-lists. Given
a planning task Π, we denote its delete-relaxation as Π+, which isdelete-relaxation

equivalent to Π but with all action schemas having empty delete lists.
By ignoring the delete lists, applying an action in a state s only adds
more ground atoms to the state. Thus, all actions that are applicable
in s remain applicable in any successor state of s. The relaxation Π+

is an overapproximation of Π: any atom reachable (i.e., achieved byreachable

any sequence of actions) in Π is also (relaxed) reachable in Π+. The
converse is not always true.

Complexity of Classical Planning

There are two decision problems commonly associated with classical
planning. The first one, called PlanEx, asks if the task is solvable:

PlanEx

Input: A planning task Π.
Question: Is there a plan π for Π?

The second one, PlanLen, asks if a plan with a certain bounded length
exists:

PlanLen

Input: A planning task Π, a number k ∈N.
Question: Is there a plan π for Π where |π| ≤ k?

2.3 classical planning 15

Del.-Free PlanEx PlanLen

Ground
✓ P NP-comp.

✗ PSPACE-comp PSPACE-comp.

Lifted
✓ EXPTIME-comp. NEXPTIME-comp.

✗ EXPSPACE-comp. NEXPTIME-comp.

Table 2.1: Complexity of different fragments of classical planning. Results
for ground planning are due to Bylander (1994); results for lifted
planning are due to Erol et al. (1995). Column “Del.-Free” indicates
whether we assume tasks to be delete-free or not.

It is useful to analyze these problems based on how we represent
the input task, as the complexity differs depending on whether Π is
lifted or ground. If Π is a lifted task, the decision problems are usually
exponentially harder to solve. Table 2.1 summarizes the results. We
also consider the special case of delete-free tasks, as they will also be
studied throughout this thesis.

Planning as Search

Since the early 2000s, state space search (Bonet and Geffner, 2001) is the state space search

ruling paradigm to solve planning tasks. A state space is a directed state space

graph where the vertices are all possible states of a planning task Π,
and there exists an edge s1

a→ s2 between two states s1 and s2 iff there
exists an action schema a and variable substitution σ for the variables
in vars(a) such that σ(a) is applicable in s1 and s2 ∈ succ(s1, σ(a)). A
path from the initial state to any goal state is equivalent to a plan.

To handle large state spaces, planners apply a heuristic search (Pearl,
1984) approach. A heuristic function h assigns to each state s the esti- heuristic function

mated distance from s to the closest goal state, denoted h(s). When
no goal state can be reached from s, the heuristic value h(s) is infinite.
A heuristic-search planner then uses this estimate, prioritizing states
which are considered more promising.

A heuristic is admissible if it never overestimates the distance from s
to the closest goal state. Admissible heuristics are important because
they can guarantee optimal solutions when used with specific search
algorithms, such as A∗ (Hart et al., 1968). When combined with an
admissible heuristic, A∗ (with state re-opening) guarantees an optimal
solution, when a solution exists.

When any solution suffices, we can use greedy best-first search (GBFS),
invented by Doran and Michie (1966). GBFS is usually faster than A∗

but does not guarantee optimality.
A∗ and GBFS work similarly: starting with a list, called an open

list, containing only the initial state I, we iteratively select the most open list

16 background

promising state s on the open list and expand s. Here, “to expand a
state” means that we generate all successors of s and place them on
the open list. State s is removed from the open list as well. We repeat
this process until we select a goal state for expansion, indicating that
we found a path in the state space from I to some goal state.

The only difference between A∗ and GBFS is in how we select the
most promising state from the open list. GBFS orders the open list
based on the heuristic value of each state, while A∗ additionally takes
into account the length of the shortest known path from the initial
state to the state, denoted as g. We do not go into further details about
the behavior of A∗ and GBFS. We refer the reader to the classic book
by Russell and Norvig (2020) for an introduction to search algorithms.

An important question in classical planning is how to come up
with good heuristic functions. One common way is to use the cost
of a relaxed plan (a plan for Π+) as heuristic value (e.g., Hoffmannrelaxed plan

and Nebel 2001, Keyder and Geffner 2008). We denote the cost of an
optimal relaxed plan as h+. Note that h+ is never higher than the cost ofh+

an optimal plan for the original (non-relaxed) task, so it can be used
as an admissible heuristic. In general, delete-relaxation heuristics that
approximate h+ tend to compare favorably with other heuristics (Betz
and Helmert, 2009; Hoffmann, 2005).

chapter notes and history

Early work on planning and action theory often focused on first-order
representations. In fact, most of the work dealt with logic vocabular-
ies much more powerful than the one we consider here (e.g., with
infinitely many objects). Planning on first-order representations is not
something new and it was the immediate choice for decades. Below,
we list some earlier “paradigms” of planning that used first-order
representations.

Newell and Simon (1963) presented the General Problem Solver
(GPS), which can be seen as a prototypical planning system. GPS
could solve problems expressed in first-order formulas. It used means-
ends analysis to perform a state-space search: given the current state
and a goal, the planner performs an action that reduces the difference
between the two.

Situation calculus (McCarthy, 1958, 1963) has also been used to
study reasoning about actions, including the famous frame problem
(McCarthy and Hayes, 1969). Perhaps the predominant version of situ-
ation calculus nowadays is the formalism by Reiter (2001), which has
been applied to planning as well (De Giacomo et al., 2016; Levesque,
2005; Reiter, 2001). Moreover, previous work also studied the recasting
of situation calculus as logic programming (Bibel, 1986; Kowalski,
1979).

2.3 classical planning 17

Another early paradigm was planning via theorem proving (Green,
1969a,b). In this scenario, a planning problem is encoded in predicate
logic and the goal is a first-order query. The answer to this query,
obtained via resolution, corresponds to a plan. The QA3 system by
Green (1969a) is probably the most well-known (historical) planner
using theorem proving.

Fikes and Nilsson (1971) combined the insights from GPS and
QA3. They introduced the STRIPS planner. STRIPS was not only
a logical formalism but actually a full-fledged planning system. It
allowed the user to describe an action theory in first-order using a
specific syntax. At its core, the STRIPS system used techniques from
GPS to control the search, and QA3 to unify action preconditions.
However, the original STRIPS formalism was not bulletproof either —
cf. Lifschitz (1987) gives a forceful critique of the semantics of STRIPS.
In the decades following its original publication, the definition of
the “STRIPS formalism” has changed (and it is rather ambiguous
nowadays). Although still first-order, STRIPS is less expressive than
situation calculus. In contrast to situation calculus, STRIPS requires a
pre-defined finite set of objects.

Pednault (1989) tried to bridge the gap between STRIPS and situa-
tion calculus with the Action Description Language (ADL). Besides
being more expressive than STRIPS (allowing quantified preconditions
and effects, for instance), ADL also presented a solution to the frame
problem. ADL was mainly focused on problems with finitely many
objects.

McDermott (1996) introduced Unpop, a state-space search planner
based on means-ends analysis. Unpop’s overall idea is similar to
delete-relaxation heuristics later used in the HSP planner (Bonet and
Geffner, 2001). Moreover, McDermott’s algorithm is similar to those
used to compute lifted delete-relaxed heuristics, and that we present
in Chapter 4.

Another important paradigm in the 1990s was refinement planning.
A refinement planner performs a plan-space search: it gradually adds
actions to a plan, trying to satisfy a series of goals, and backtracking to
refine the plan when some constraint is violated (Weld, 1994). A large
portion of the work in refinement planning focused on partial order
planners. A partial order planner can place actions into a plan without
specifying which comes first. In this setting, a plan is not a sequence of
actions, but a partial-order. Successful implementations included SNLP
(McAllester and Rosenblitt, 1991), UCPOP (Penberthy and Weld, 1992),
and VHPOP (Younes and Simmons, 2003). Younes and Simmons (2002)
investigated the impact of ground action in partial order planners, and
showed that ground actions help in general, but that some benefits of
the ground representation (e.g., enforcing constraints on the domains
of variables) can also be exploited by the lifted representation. Their

18 background

work is an example of how successes from the ground representation
can be translated to the first-order setting.

The Planning Domain Definition Language (PDDL) was introduced
as the standard language during the first editions of the IPC (Haslum
et al., 2019; McDermott, 2000; McDermott et al., 1998). PDDL was
defined as a common encoding for the competing planners, and it
remains so until today. It also uses a first-order representation with a
finite set of objects. In the initial IPCs, most planners only supported
a fragment of PDDL similar to STRIPS. Nowadays, most planners
support fragments closer to (or more expressive than) ADL.

In the 1990s, Kautz and Selman (1992) showed that using proposi-
tional satisfiability (SAT) to solve planning problems was an effective
technique. SAT planning translates the planning task into a SAT for-
mula and uses a SAT solver to find a model. This encoding bounds the
maximum length of a plan, so if no plan is found with the assumed
length, the planner iteratively increases this bound and produces a
new (and longer) formula, until a model is found. When this hap-
pens, the model is converted into a plan. SAT planning disregards
any first-order structure of the problem, and instead works directly
with the propositional representation. Although the supremacy of SAT
planners did not last, most of the following works still used propo-
sitional representations. The dominant paradigm in planning in the
last decades was state-space search (Bonet and Geffner, 2001; Francès
et al., 2018; Helmert, 2006; Hoffmann and Nebel, 2001; Seipp, 2023;
Torralba et al., 2014).

Part I

L I F T E D P L A N N I N G

3
L I F T E D S U C C E S S O R G E N E R AT I O N

Classical planning relies on a model of the world encoded in some
suitable representation language. One such language is PDDL (Haslum
et al., 2019; McDermott et al., 1998), a first-order logic-based language
developed to support the IPC and to standardize previous research
efforts (Fikes and Nilsson, 1971; Pednault, 1989).

While there is a remarkable diversity of planning techniques, most
planners nowadays ground the first-order representation of the prob-
lem into a propositional one as a preprocessing step. Although the
ground representation can be exponentially larger in the number of
variables of the action schemas, there are efficient grounding tech-
niques (e.g., Helmert 2009) that make this preprocessing an effective
strategy. The shortcoming, however, is that the entire set of ground
actions needs to be stored in memory.

Most IPC benchmarks are not challenging to ground (Areces et
al., 2014). Nevertheless, several interesting planning problems are
difficult not because of their combinatorial structure, but because of
the intractable size of their ground representations. These hard-to-
ground problems arise in different contexts, such as natural language
processing, genomics, and organic synthesis (Haslum, 2011; Koller
and Petrick, 2011; Matloob and Soutchanski, 2016).

In this chapter, we give a first step towards planning directly on
the first-order representations. We use well-known techniques from
database theory to tackle the task of successor generation, one of the successor generation

key operations when planning using heuristic search. The successor
generation problem is the following: given an action schema a together
with a state s, enumerate all instantiations of vars(a) yielding ground
actions that are applicable in s.

For example, given the action drive(T, C1, C2) from Example 2.4
where

pre(drive(T, C1, C2)) = {at(T, C1), adj(C1, C2)}
add(drive(T, C1, C2)) = {at(T, C2)}
del(drive(T, C1, C2)) = {at(T, C1)},

and a state s = {adj(a, b), adj(b, a), adj(b, c), adj(c, b), at(t, b)}, a succes-
sor generator should produce all the instantiations of variables T, C1,

21

22 lifted successor generation

and C2 such that drive(T, C1, C2) is applicable in s. In this case, there
are only two: drive(b, a, t) and drive(b, c, t).

The enumeration of all applicable ground actions derived from an
action schema in a given state s can be seen as a conjunctive query where
s is a database and the action precondition is a query. In view of this,
we introduce successor generation techniques based on standard query
evaluation algorithms (Ullman, 1989). We analyze our IPC and HTG
benchmark sets and find out that the preconditions of the majority of
action schemas correspond to acyclic conjunctive queries, which can
be evaluated in time polynomial in the size of the state and number
of applicable actions (Yannakakis, 1981).

We implement a lifted planner that uses these techniques for suc-
cessor generation. Our planner is competitive with ground baseline
planners in domains that are hard to ground. In these domains, our
planner solves three times more instances than previous lifted planners
(Ridder, 2013).

3.1 conjunctive queries

We briefly review some relevant background from database theory
(Abiteboul et al., 1995; Ullman, 1989).

A relational signature σ is a finite set of relation symbols, where
each relation r ∈ σ has an associated arity ar(r). A database D over σdatabase

consists of a domain Dom and a set R of finite relations over σ. We
stick to the convention of identifying databases with a logical theory,
where a tuple ⟨c1, . . . , cm⟩ ∈ r is seen as a ground atom r(c1, . . . , cm)

of a first-order language.
A conjunctive query Q over a database D is a first-order logic formulaconjunctive query

with the form

∃Y1, . . . , Ym . p1(X1, Y1) ∧ · · · ∧ pk(Xk, Yk).

where vars(Xi) ⊆ {X1, . . . , Xn}, vars(Yi) ⊆ {Y1, . . . , Ym} for all 1 ≤ i ≤
k, and ∪k

i=1vars(Xi) = {X1, . . . , Xn}. The free variables X1, . . . , Xn are
the distinguished variables of the query.distinguished

variables Conjunctive queries are often written in rule form:

q(X1, . . . , Xn)← p1(X1, Y1), . . . , pk(Xk, Yk).

This rule form leaves implicit the existential quantification of the non-
distinguished variables Y1, . . . , Ym. The relation q(X1, . . . , Xn) denotes
the answer to the conjunctive query.

A conjunctive query can be interpreted as a logic program with a
single non-recursive rule. We write body(Q) and head(Q) to denote
the right-hand and left-hand sides of a conjunctive query Q.

Example 3.1 Consider the conjunctive query Q:

q(Y)← r(X, Y), s(Y).

3.1 conjunctive queries 23

F

S T

D

Y X

at(X, Y)

at(S, F)

move-dir(Y, F, D)

move-dir(F, T, D)

Figure 3.1: Hypergraph H(QEx) associated with the query QEx from Exam-
ple 3.2.

The only distinguished variable is Y. The head of the query is head(Q) =

q(Y), and body(Q) = {r(X, Y), s(Y)}.
Let D = {r(a, b), r(c, d), s(d)} be a database. The answer to Q on D is
{q(d)}.

Conjunctive query answering is NP-complete (Chandra and Merlin,
1977). Given a database D and a query

q(T)← p1(T1), . . . , pn(Tn).

where vars(T) ⊆ ⋃
1≤i≤n vars(Ti), the decision problem asks if the

query answer q(T) is non-empty. It is easy to come up with a non-
deterministic algorithm to solve this problem: guess an instantiation
for all variables in the query and check if it unifies the body. It is
also easy to show NP-hardness. For example, we can reduce the
Hamiltonian path problem to a conjunctive query. Given a directed graph
G = ⟨V, E⟩ where |V| = n, we construct a database DHP with two
binary relations conn and ineq where

conn = {⟨u, v⟩ | (u, v) ∈ E},
ineq = {⟨u, v⟩ | u, v ∈ V, u ̸= v}.

Solving the query below over DHP decides if there is a Hamiltonian
path in G:

q(V1, . . . , Vn)← conn(V1, V2), . . . , conn(Vn−1, Vn),

ineq(V1, V2), ineq(V1, V3), . . . , ineq(Vn−1, Vn).

Every conjunctive query Q can be associated with a hypergraph hypergraph

H(Q) = ⟨V(Q), E(Q)⟩ with one vertex v ∈ V(Q) for each variable
occurring in body(Q) and one hyperedge ei = vars(Ti) ∈ E(Q) for
each atom pi(Ti) in body(Q).

Example 3.2 Consider the following query, which we refer to as QEx:

q(X, Y, S, F, T, D)← at(X, Y), at(S, F),

move-dir(Y, F, D), move-dir(F, T, D).

Its associated hypergraph H(QEx) is shown in Figure 3.1.

24 lifted successor generation

The GYO reduction (Graham, 1979; Yu and Ozsoyoglu, 1979) of such aGYO reduction

hypergraph is another hypergraph obtained through a simple iterative
procedure that removes one hyperedge e ∈ E(Q) at each step until
E(Q) has a single hyperedge or no edge removal can be performed.
At each step, we can remove e ∈ E(Q) iff another hyperedge f ∈ E(Q)

exists such that the variables in e \ f only appear in e. We say that
such a step removes e in favor of f .

The hypergraph H(Q) is acyclic iff its GYO reduction is a hyper-
graph with a single hyperedge (Ullman, 1989).1 A conjunctive query
Q is acyclic iff its hypergraph H(Q) is acyclic.acyclic query

Example 3.3 One possible GYO reduction of the hypergraph H(QEx) —
see Example 3.2 — is the following:

1. remove at(X, Y) in favor of move-dir(Y, F, D),

2. remove move-dir(Y, F, D) in favor of move-dir(F, T, D),

3. remove at(S, F) in favor of move-dir(F, T, D).

Only the hyperedge move-dir(F, T, D) is still in H(QEx). Hence, H(QEx)

is acyclic, and so is QEx.

If the input size of a query evaluation problem is I = ∥Q∥ and U
is the representation size of its answer, we prefer query evaluation
algorithms that are output-polynomial (i.e., time and space are poly-
nomial in I + U). No complete algorithm can have a runtime better
than O(I + U), since it needs to read the input completely and out-
put the query answer. Conjunctive query evaluation is NP-hard in
general (Chandra and Merlin, 1977), so no efficient general algorithm
can exist unless P = NP. However, output-polynomial algorithms
exist for acyclic conjunctive queries (Yannakakis, 1981). In contrast,
cyclic conjunctive queries do not have such guarantees of efficiency
(Bernstein and Goodman, 1981). When computing a cyclic conjunctive
query, we might generate intermediate relations that are exponentially
larger than the output.

3.2 relational algebra redux

Conjunctive queries are equivalent in expressive power to the select,
project, join and rename (SPJR) fragment of relational algebra (Codd,relational algebra

1970). We give an intuitive description of this algebra and refer to
Abiteboul et al. (1995) for a formal definition.

The SPJR algebra is based on named relations, often called tables. Anamed relations

table is a relation where each position (called column) has an attribute
name. We write r(X1, . . . , Xn) to denote an n-ary named relation r with

1 We use the standard database theory characterization of hypergraph α-acyclicity
(Fagin, 1983).

3.3 evaluating conjunctive queries in practice 25

attribute names X1, . . . , Xn. As for sequences of terms, we also use
set-theoretical notation on attribute names.

Given two tables r(X) and s(Y), the basic operations are

(i) to rename a column;

(ii) to project r(X) into a set of attributes Y ⊆ X, obtaining a relation projection

πY(r(X)) where some columns of r(X) have been removed or
rearranged;

(iii) to select some tuples from r(X) that either coincide on two selection

different attributes Xi, Xj ∈ X (σXi=Xj(r(X))), or for which an
attribute Xi ∈ X has a particular constant value c (σXi=c(r(X)));

(iv) to join r(X) and s(Y). The (natural) join r(X) ⋊⋉ s(Y) selects all (natural) join

tuples from the Cartesian product of r(X) and s(Y) that match
on shared attribute names (i.e., X ∩ Y), and then projects out all
copies but one of the duplicate attributes. Here, we assume the
join operation (⋊⋉) is left-associative.

In addition to these four basic operations, one can define the semi-join semi-join

r(X)⋉ s(Y) as the projection of r(X) ⋊⋉ s(Y) to X (i.e., πX(r(X) ⋊⋉
s(S)).

While relational algebra deals with named relations, the relations
in our databases are unnamed. To bridge this gap, we can simply
associate each relation in our database with a sequence of attribute
names. In our conjunctive queries, our attribute names will be the
same as the variables used. We can then solve any conjunctive query

q(T)← p1(T1), . . . , pn(Tn).

that does not mention constants (i.e., Ti only contains variables for all
1 ≤ i ≤ n) by considering each pi(Ti) as a named relation and then
computing the following relational algebra operation:

q(T) := πT(p1(T1) ⋊⋉ · · · ⋊⋉ pn(Tn)). (3.1)

If some atom p(Ti) mentions a constant c, we introduce a fresh at-
tribute name Attr-c to refer to this element in Ti. We then select only
columns where Attr-c equals c (i.e., σAttr-c=c(p(Ti))). For example, if
our query has atom p(X, a) in the body, then we consider it as a named
relation p(X, Attr-a), and we start by selecting σAttr-a=a(p(X, Attr-a)).

3.3 evaluating conjunctive queries in practice

A conjunctive query Q over a database D can be evaluated in two steps:
unify all atoms in the body with the database D, and then project the
result into the distinguished attributes — see (3.1). The unification
step is done by simply performing the natural join of all atoms in the

26 lifted successor generation

body of the query. But this is not so simple: bad join orders can lead to
exponentially large intermediate results. To avoid this, it is common to
decompose this unification into smaller steps, ordering how the body of
the query should be evaluated. This sequence is called a query program.query program

A query program is a sequence of assignments of relational algebra
expressions. For example, given a rule

q(X, Y, Z)← p(X, Y), p(Y, Z), s(Z)

we could have the following query program:

p(Y, Z) := p(Y, Z)⋉ s(Z)

s(Z) := s(Z)⋉ p(Y, Z)

p(Y, Z) := p(Y, Z)⋉ p(X, Y)

p(X, Y) := p(X, Y)⋉ p(Y, Z)

q(X, Y, Z) := s(Z) ▷◁ p(Y, Z) ▷◁ p(X, Y).

These operations are interpreted like imperative programming lan-
guages — e.g., the first step in the example above replaces the relation
p(Y, Z) with p(Y, Z)⋉ s(Z), and the next step uses this updated re-
lation. When evaluating a query program, each atom in body(Q) is
interpreted as a different named relation. So, in the example above,
p(X, Y) and p(Y, Z) correspond to different tables, as their attribute
names are different.

The assignments of a query program are local: the actual database
is not changed, but we operate on a local copies (also called mate-
rializations). To illustrate, assume that in the query program above,
the atom p(Y, Z) can initially be unified as p(a, b) and p(a, c) and
atom s(Z) as s(b). The local copy of p(Y, Z) then contains p(a, b)
and p(a, c), while the copy of s(Z) contains only s(b). After step
p(Y, Z) := p(Y, Z)⋉ s(Z), our local p(Y, Z) contains only p(a, b) —
as p(a, c) was removed because it does not semi-join with our local
copy of s(Z).

Query programs that only use (semi-)joins are called (semi-)join
programs.(semi-)join programs

Acyclic Conjunctive Queries

When the conjunctive query is acyclic, output-polynomial evaluation
algorithms exist. We next introduce two standard algorithms for this
particular case (Bernstein and Goodman, 1981; Yannakakis, 1981).

We first consider conjunctive queries Q

q(T)← p1(T1) . . . , pn(Tn).

where vars(T) =
⋃

i vars(Ti). This means that all variables are distin-
guished and no projection is needed. A full reducer of such a query isfull reducer

3.3 evaluating conjunctive queries in practice 27

a semi-join program that filters out tuples from the relations pi that
do not unify with the rest of the body.

Full reducers exist only for acyclic conjunctive queries (Bernstein
and Goodman, 1981), and they can be computed during the GYO
reduction. Assume that the GYO reduction removes the hyperedges
of H(Q) in the order (e1, f1), . . . , (em, fm), where (ei, fi) indicates that
iteration i removed hyperedge ei in favor of hyperedge fi. (Note that
each hyperedge ei or fi corresponds to some atom pj(Tj) in the body
of the query.) Since Q is acyclic, all hyperedges but the last one can
be removed, so the set of all ei and fi covers all hyperedges. Then the
semi-join program

f1 := f1 ⋉ e1

...

fm := fm ⋉ em

em := em ⋉ fm

...

e1 := e1 ⋉ f1

is a full reducer for Q.
After evaluating the full reducer, we can compute the query answer

simply by joining all atoms in the body in any order. It is guaranteed
that no intermediate relation is larger than the answer (Ullman, 1989). The
evaluation of the full reducer with n relations plus the final sequence
of joins takes time O(n(I log I + U log U)), so it is output-polynomial.

Example 3.4 The GYO reduction from Example 3.3 yields the following
semi-join program:

move-dir(Y, F, D) :=move-dir(Y, F, D)⋉ at(X, Y)

move-dir(F, T, D) :=move-dir(F, T, D)⋉ move-dir(Y, F, D)

move-dir(F, T, D) :=move-dir(F, T, D)⋉ at(S, F)

at(S, F) := at(S, F)⋉ move-dir(F, T, D)

move-dir(Y, F, D) :=move-dir(Y, F, D)⋉ move-dir(F, T, D)

at(X, Y) := at(X, Y)⋉ move-dir(Y, F, D).

After executing the full reducer, the query can be computed with the a join of
all its relations:

q(X, Y, S, F, T, D) := at(X, Y) ⋊⋉ at(S, F)

⋊⋉ move-dir(Y, F, D) ⋊⋉ move-dir(F, T, D).

It is guaranteed that no intermediate join has more tuples than the answer of
the query.

28 lifted successor generation

move-dir(F,T,D)

move-dir(Y,F,D)

at(X,Y)

at(S,F)

Figure 3.2: Join tree obtained from the GYO reduction of H(QEx) (see Exam-
ple 3.3 and Figure 3.1).

Now, assume that vars(T) ⊂ ⋃i vars(Ti). In words, not all variables
are distinguished. In this scenario, the full reducer is no longer guar-
anteed to be output-polynomial.

In such cases, Yannakakis’ algorithm (1981) has better asymptoticYannakakis’
algorithm guarantees, as it interleaves the joins with projections. It starts by

checking if the query is acyclic using the GYO reduction, as explained
above. As it performs this check, the algorithm also constructs a join
tree T (Q) of the query where

1. every atom pi(Ti) is a node, and

2. node pi(Ti) is a child of pj(Tj) iff the hyperedge corresponding
to pi(Ti) was removed in favor of the hyperedge corresponding
to pj(Tj).

Example 3.5 Figure 3.2 shows the join tree constructed from the GYO
reduction of H(QEx), in Example 3.3.

The algorithm then evaluates the query by traversing T (Q) three
times. First, it traverses the tree T (Q) bottom-up, semi-joining each
parent pj(Tj) with its child pi(Ti) (i.e., pj(Tj) ⋉ pi(Ti)) . Second, it
traverses T (Q) top-down, now semi-joining each child pi(Ti) with its
parent pj(Tj) (i.e., pi(Ti)⋉ pj(Tj)). These two traversals are equivalent
to evaluating the full reducer of the query, as in the GYO algorithm,2

and all spurious tuples that do not join any tuple in the query answer
are removed. Again, each node corresponds to a local copy of the
original relation, so the updates are also local.

The third and last traversal is also bottom-up. When visiting a node
pi(Ti) with parent pj(Tj), the algorithm updates the parent relation
with the following project-join:

pj(T ′) := πTj∪(Ti∩T)(pi(Ti) ▷◁ pj(Tj))

2 The full reducer can also be explained directly in terms of join trees. We decided to
introduce it in terms of semi-join programs first to make the order of the operations
more explicit.

3.4 a database perspective of classical planning 29

where T are the distinguished variables of the query and T ′ = Tj ∩
T. Once the tree traversal reaches the root node pk(Tk) of T (Q), it
evaluates the assignment

q(T)← πT(pk(Tk)),

which projects the root node to the distinguished attributes.
While traversing the join tree, all intermediate relations have size

bounded by O(IU) (Ullman, 1989; Yannakakis, 1981). Furthermore,
the algorithm has runtime O((I + U)2), so it is output-polynomial.

3.4 a database perspective of classical planning

Given a planning task Π = ⟨P , C,A, I, G⟩, we consider a state s to be
a database D(s) = ⟨C, {rp | p ∈ P}⟩ where the objects of Π form the
domain and there is one relation for every predicate. The relation rp

contains all tuples for which the corresponding ground atom of p is
in s, i.e.,

rp = {⟨c1, . . . , cn⟩ | p(c1, . . . , cn) ∈ s}.

Finding the set of applicable actions for a state can then be ex-
pressed as a query. Let a ∈ A be an action schema, and pre(a) =

{p1(T1), . . . , pn(Tn)} its precondition. We also define T = vars(a). The
set of applicable ground actions for a are the ones that are grounded
with object tuples the following conjunctive query over D(s) which
we call the precondition query of a:

q(T)← rp1(T1), . . . , rpn(Tn)

Example 3.6 Consider the standard Gripper domain, where a robot with
two grippers must move some balls from one room to another. Each gripper
can carry at most one ball. The robot has three actions: move between the two
rooms; pick up a ball with one of the grippers; drop one ball.

Let s be the state where the robot and two balls are in room roomA and a
third ball ball3 is being carried by the robot with its gripper gripper1. The
second gripper, gripper2, is free to pick up another ball. The database D(s)
contains the relations

rat = {⟨ball1, roomA⟩, ⟨ball2, roomA⟩},
rcarry = {⟨ball3, gripper1⟩},

rat-robby = {⟨roomA⟩},
rfree = {⟨gripper2⟩}.

Action schema pick(B, R, G) models picking up ball B in room R with
robot gripper G, and has preconditions

pre(pick(B, R, G)) = {at(B, R), at-robby(R), free(G)}.

30 lifted successor generation

Its applicable instantiations are described by the conjunctive query

qpick(B, R, G)← rat(B, R), rat-robby(R), rfree(G).

The query evaluates to {⟨ball1, roomA, gripper2⟩, ⟨ball2, roomA, gripper2⟩}
showing that in s the two applicable instantiations are to pick up ball1 or
ball2 with gripper gripper2 in roomA.

Whether a precondition query can be efficiently evaluated depends
on whether its hypergraph is acyclic. In the rest of the chapter, we
refer to action schemas in which the precondition query has an acyclic
hypergraph as acyclic action schemas and the remaining action schemasacyclic action

schemas as cyclic action schemas.

Acyclic Action Schemas

Precondition queries of acyclic action schemas can be evaluated effi-
ciently with the full reducer algorithm. In this case, the computation
is polynomial in the size of the state and the number of applicable
ground actions: we simply execute the GYO reduction on the precon-
dition query and evaluate the full reducer on the given state.

Sometimes, however, we can do even better than that. In some
instances, a state s might have n different applicable actions that
lead to the same successor state. It turns out that we can improve our
successor generator by identifying some of the applicable actions
leading to a same state while evaluating the query.

Example 3.7 Consider the action introduce(X, Y, Z) below. It encodes that
if a person X knows Y, and Y knows Z, then X and Z can be introduced to
each other:

vars(introduce(X, Y, Z)) = {X, Y, Z}
pre(introduce(X, Y, Z)) = {knows(X, Y), knows(Y, Z)}
add(introduce(X, Y, Z)) = {knows(X, Z)}
del(introduce(X, Y, Z)) = ∅.

Finding the applicable actions in a state corresponds to solving the following
query:

qintroduce(X, Y, Z)← rknows(X, Y), rknows(Y, Z).

If two people have more than one common friend that can introduce them,
there are several ways to introduce them to each other — all with the same
effect.

In the example above, variable Y can be seen as existentially quantified.
This implies that Y is not distinguished, so it can be left out of the
query answer. Instead of mentioning all variables of the action schema

3.4 a database perspective of classical planning 31

in the query’s head as distinguished variables, we only mention those
that occur in the effect. Existential quantification of action parameters
directly corresponds to the existential quantification in conjunctive
queries.

Example 3.8 Quantifying the variable Y existentially, the precondition
query of Example 3.7 becomes

qintroduce(X, Z)← rknows(X, Y), rknows(Y, Z).

This new query contains at most one tuple for each choice of X and Z.

Precondition queries for schemas with existentially quantified vari-
ables can be evaluated with Yannakakis’ algorithm. As we discussed
earlier, this algorithm is quadratic in the size of the input I and the
output U. Compared to the full reducer this does not sound like an im-
provement. However, the output is slightly different: it contains tuples
that are different with respect only to the distinguished variables. This
can be a much smaller set in action schemas where there are many
existentially quantified free variables. For example, if we have state
s = {knows(a, b1), . . . , knows(a, b100), knows(b1, c), . . . , knows(b100, c)},
the query in Example 3.7 has 100 instantiations in its answer, while
the query in Example 3.8 has only one.

To extract a valid plan for the original PDDL task, we still need
to know parameters for the existentially quantified parameters. We
compute them by slightly modifying the algorithm. During the tree
traversal, we keep one instantiation of the existentially quantified vari-
ables for every feasible tuple instantiating the distinguished variables.
In this way, we can create fully grounded actions without generating
redundant copies.

Cyclic Action Schemas

When the precondition of the action schema is cyclic, a join program
can have intermediate relations exponential in the size of the state and
number of applicable actions. One way to mitigate this are evaluation
plans (Abiteboul et al., 1995). These are strategies to decrease the
chance of exponentially large intermediate relations.

We consider only a static strategy based on a partial execution of a
full reducer. We first obtain run GYO algorithm until no hyperedge can
be removed. Since the query is cyclic, more than one hyperedge will
be left when the algorithm stop, and the semi-join program computed
(until it stops) does not correspond to a full reducer. It can, however,
be seen as a “partial reducer” that still filters out unnecessary tuples of
some relations. Whenever we want to instantiate a cyclic action schema,
we first evaluate this “partial reducer” and then compute a complete
join program of the precondition atoms ordered by increasing arity
with ties broken according to the order of predicates in the input.

32 lifted successor generation

3.5 experimental results

We implemented a lifted planner using the successor generator meth-
ods previously described. Our planner is called Powerlifted. It supportsPowerlifted

the PDDL fragment representing STRIPS with inequalities, and types,
which are compiled into static predicates.

Powerlifted represents states as set of tables, only keeping track of
the atoms of each state. Ground planners (where all possible atoms
are known in advance), on the other hand, usually keep track which
atoms are true and also which ones are false. In most domains, the
ground representation is more efficient (Corrêa, 2019), but the lifted
one has the merit of avoiding any sort of grounding.

We start analyzing different successor generator techniques using
breadth-first search, and considering all action schemas as unit cost.

Naive Joins

To establish a baseline, we first use a naive join program to evaluate
precondition queries. We use three variants that differ in the order in
which they join the relations:

• J uses the predicate order as given by the action schema;

• J< orders the relations by increasing arity, breaking ties accord-
ing to the order of J;

• JR joins the relations in a random order. Results are averaged
over three runs.

We first report the results for the IPC set. Table 3.1, section “Base-
lines”, shows the results. In 16 of the 29 domains, all methods have
identical performance. Using the predicate order from the input (J)
performed the best, solving 260 tasks. Ordering the relations by arity
(J<) performed slightly worse with a coverage of 237, while a random
order (JR) led to worse results with an average coverage of 223. This
difference in coverage shows the large impact of join order on perfor-
mance and that both orders have a positive effect. The most drastic
difference in the IPC set is the freecell domain. Here, JR and J< solves
0 tasks, while J solves 14.

In the HTG set, J also achieves the highest coverage. Results are
shown in Table 3.2. While J solves 124 tasks, J< solves 117 and JR

solves 89 on average. In pipesworld-tankage-nosplit domain, bad join
orders lead to huge intermediate relations, which consume too much
memory. In other domains (e.g., visitall-multidimensional), while the
bad join order does not exhaust memory, it still slows down the search
and decreases coverage.

To estimate how much larger these intermediate relations are, we
checked the size of the largest intermediate relation when generation

3.5 experimental results 33

Baselines

Coverage on IPC set J J< JR FRSJ,< Y

airport (50) 18 18 18 18 18

barman-sat14-strips (20) 0 0 0 0 0

blocks (35) 18 18 18 18 18

childsnack-sat14-strips (20) 0 0 0 0 0

depot (22) 3 3 2 4 3

driverlog (20) 7 7 5 7 7

freecell (80) 14 0 0 13 13

grid (5) 1 1 1 1 1

gripper (20) 7 7 6 7 7

logistics00 (28) 10 10 10 10 10

logistics98 (35) 1 1 1 1 1

miconic (150) 45 45 40 45 45

movie (30) 30 30 30 30 30

mystery (30) 13 12 8 15 15

nomystery-sat11-strips (20) 1 0 0 1 0

openstacks-strips (30) 7 7 7 7 7

parking-sat11-strips (20) 0 0 0 0 0

parking-sat14-strips (20) 0 0 0 0 0

pipesworld-notankage (50) 13 12 12 13 13

pipesworld-tankage (50) 7 2 3 8 8

psr-small (50) 43 43 43 43 43

rovers (40) 4 4 4 4 4

satellite (36) 3 3 3 3 3

thoughtful-sat14-strips (20) 1 0 0 0 0

tpp (30) 5 5 5 5 5

trucks-strips (30) 2 2 2 2 2

visitall-sat11-strips (20) 0 0 0 0 0

visitall-sat14-strips (20) 0 0 0 0 0

zenotravel (20) 7 7 5 7 7

Sum (1001) 260 237 223 262 260

Table 3.1: Coverage of different lifted successor generation methods in the
IPC set using breadth-first search.

34 lifted successor generation

Baselines

Coverage on HTG set J J< JR FRSJ,< Y

blocksworld-large (40) 0 0 0 0 0

childsnacks-large (144) 3 3 3 4 3

genome-edit-distance (312) 44 44 44 44 44

logistics-large (40) 5 5 0 5 5

organic-synthesis (56) 23 25 13 44 44

pipesworld-tankage (50) 11 2 3 12 11

rovers-large (40) 0 0 0 0 0

visitall-multidimensional (180) 38 38 26 38 38

Sum (862) 124 117 89 147 145

Table 3.2: Coverage of different lifted successor generation methods in the
HTG set using breadth-first search.

the successors of the initial state. In the pipesworld-tankage-nosplit
domain (HTG set), there are instances where J had ≈ 30 000 tuples in
its largest intermediate relation, while J< had ≈ 10 million, and JR ran
out of memory when joining tables with more than 50 million tuples.
In the IPC set, the visitall-sat14-strips domain also had similarly drastic
results: in the initial state, J has at most 4 tuples in any intermediate
relation, while the random join JR has more than 17 million in the
largest tasks. Although the search did not run out of memory, these
large relations damaged running time. There are also domains where
J< is consistently superior to J, such as the miconic and zenotravel
domains. However, the differences are not significant enough to impact
the total coverage in these domains.

Acyclic Schemas

The naive join methods fail when the intermediate relations become
too large. For acyclic action schemas this can be avoided with the
full reducer. But how many of the action schemas are acyclic? The
third column (“Acyc.”) in Table 3.3 shows the proportion of acyclic
schemas in each domain. In the IPC set the average proportion of
acyclic schemas is 87.1%, and 19 domains have only acyclic schemas.
This is good news for our method, since grounding these schemas can
be done efficiently in all states. The situation looks worse in the hard-
to-ground domains, where the average proportion of acyclic schemas
is 57.8%. In particular, the challenging organic-synthesis domain has
only 5% acyclic schemas. Looking closer at the hypergraph of the

3.5 experimental results 35

precondition queries of these schemas, it turns out that most of the
cycles are caused by inequalities. If we ignore them, the incidence
of acyclic schemas increases to over 90% in organic-synthesis, and
to 81.9% in the HTG set (fourth column of Table 3.3). The notable
exception is in pipesworld-tankage where all action schemas are cyclic
even when ignoring inequality relations. None of the domains in our
IPC set has inequalities in the precondition, so ignoring them does not
affect acyclicity.

Therefore, we do not consider inequalities as part of the query when
computing the full reducer, and we handle them by removing tuples
that violate such constraining after every join. There is a more sophis-
ticated algorithm for acyclic conjunctive queries with inequalities that
is fixed-parameter tractable in the size of the query and the number
of variables (Papadimitriou and Yannakakis, 1999) and could improve
the results. We consider this future work.

To test the benefit of exploiting acyclicity, we ran our breadth-first
search with the configuration FRSJ,<, which uses the GYO reduction
in a preprocessing step to test which queries are cyclic. As a side
effect, this step finds a full reducer for acyclic schemas and a partial
reducer for cyclic ones. During the search, all queries first execute
the full/partial reducer before the final join. For acyclic schemas the
algorithm then executes the join program in the order established by
the hyperedge removals. For cyclic schemas, the final join program is
J.

Compared to J, using FRSJ,< to generate successors improves the
coverage from 260 to 262 in the IPC set and from 124 to 147 in the
HTG set. The largest improvement is in the organic-synthesis domain,
where J and J< solved 23 and 25 tasks respectively, while FRSJ,< solves
44 instances.

The main advantage of using the full reducer is that it avoids large
intermediate relations. Trying to estimate how often this occurs, we
compared the largest intermediate relation size when expanding the
initial state using J and FRSJ,<. Figure 3.3 shows the results for the
HTG set. In instances with a majority of acyclic actions, the largest
intermediate relation computed by J is sometimes five order of magni-
tude larger than the one computed by FRSJ,<. In domains with cyclic
schemas, the initial partial reducer semi-join program used by FRSJ,<

also seems to help in general. However, in the rovers-large domain
the opposite is true: J outperforms FRSJ,<, sometimes by more than
two orders of magnitude. In this domain, some tasks have very large
initial states (more than 70 000 atoms), but ≈ 80% of these atoms
are in the same relation (visible). It is then important that join orders
minimize this relation as early as possible. This happens by chance
with J, but not with FRSJ,<. One way to solve this issue is to consider
secondary heuristic methods (such as relation size) when computing
a full/partial reducer.

36 lifted successor generation

|A| Acyc. Acyc. ̸= ∃-quant.

barman-sat14-strips 12 91.7% 91.7% 83.3%

freecell 10 70.0% 70.0% 30.0%

nomystery-sat11-strips 3 66.7% 66.7% 33.3%

pipesworld-notankage 6 33.3% 33.3% 100.0%

pipesworld-tankage 10 10.0% 10.0% 100.0%

rovers 9 88.9% 88.9% 66.7%

satellite 5 80.0% 80.0% 40.0%

thoughtful-sat14-strips 21 61.9% 61.9% 38.0%

tpp 4 75.0% 75.0% 50.0%

Other 19 domains 68 100.0% 100.0% 25.0%

IPC Domains 87.1% 87.1% 34.9%

blocksworld-large 3 100.0% 100.0% 0.0%

childsnack-contents 48 62.5% 75.0% 25.0%

genome-edit-distance 14 35.7% 100.0% 0.0%

genome-edit-distance-split 21 71.4% 100.0% 0.0%

organic-synthesis 116 4.3% 91.4% 91.4%

pipesworld-tankage 4 0.0% 0.0% 100.0%

rovers-large 9 88.9% 88.9% 66.7%

visitall-multidim. 72 100.0% 100.0% 0.0%

HTG Domains 57.8% 81.9% 35.9%

Table 3.3: Proportions of action schemas that are acyclic (Acyc.), acyclic when
ignoring inequalities (Acyc. ̸=), and that have existentially quanti-
fied parameters (∃-quant.). Rows IPC Domains and HTG Domains
show the average proportions over each set.

When comparing total search time, FRSJ,< is usually faster than the
baseline methods. Figure 3.4 compares total search time for FRSJ,< and
J in the HTG set. In most domains, both methods have similar run
time. However, in organic-synthesis and pipesworld-tankage, FRSJ,<

is sometimes much faster. Although one could expect that the FRSJ,<

method would be slower due to the additional overhead of evaluating
a semi-join program prior to the full join program, this preprocessing
steps pays off and FRSJ,< is competitive on all instances. It is interesting
to see that FRSJ,< is also superior in the pipesworld-tankage domain,
albeit all its actions being cyclic. This shows that our method for
cyclic actions — using the semi-join program computed by the GYO
reduction until it stops — is better than a naive join. In the IPC set, we

3.5 experimental results 37

100 102 104 106

100

102

104

106

uns.

uns.

J (lower for 40 tasks)

FR
SJ

,<
(l

ow
er

fo
r

1
3
4

ta
sk

s)

blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 3.3: Size of the largest intermediate relation when computing succes-
sor states for the initial state of each task in the HTG set.

observed a similar trend, although the running times of FRSJ,< and J
are more similar.

Existentially Quantified Preconditions

We also discussed a successor generator based on Yannakakis’ algo-
rithm that has a potential gain for instances with existentially quanti-
fied variables. For example, the organic-synthesis domain has action
schemas with 17 variables where only four appear in the effect. On av-
erage, the proportion of action schemas with one or more existentially
quantified variables per domains is 34.9% in the IPC set, and 35.9% in
the HTG set (see Table 3.3).

As there are many tasks with a potential gain, we implemented and
evaluated a successor generator Y that uses Yannakakis’ algorithm to
create only one grounded action for each choice of distinguished vari-
ables. Using Y, the successor generator outputs one instantiation for
each different successor state, instead of each applicable instantiation.
This means that if several instantiations lead to the same state, Y is
able to identify them and save some effort. For cyclic action schemas
Y uses the same fall back strategy as FRSJ,<. In our implementation,
variables occurring in inequalities are considered distinguished to
preserve completeness.3 We also do not consider inequalities when

3 To illustrate why this is necessary, consider the following query: q(X, Y, Z) ←
p(X, Y), q(Y, A), r(Z), A ̸= Z. A possible join tree (that ignores the inequality) for
this query has p(X, Y) as the root, and the other two positive atoms as its children.
As we keep only one instantiation of the non-distinguished variable A for every
instantiation of Y, it could be that the chosen instantiation violates A ̸= Z, while
other instantiations for A satisfy the inequality. However, we can only find out which
values of A violate the inequality after we know the instantiations of Z. To simplify

38 lifted successor generation

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

J (lower for 17 tasks)

FR
S

J,
<

(l
ow

er
fo

r
8
9

ta
sk

s)

blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 3.4: Time comparison between J and FRSJ,< on the HTG set.

computing the join trees, and we enforce them after the joins as done
in the implementation of FRSJ,<.

Surprisingly, using Y in a breadth-first search is slightly worse than
using FRSJ,< (see Tables 3.1 and 3.2). It solves two tasks less on each
set.

Although several instances have potential savings in the number
of generated states using Y, we did not see any improvement. All
instances where Y reduces the number of duplicated successors states
are either in the movie domain (IPC set) or in organic-synthesis (HTG
set). Still, it did not increase coverage in either of these domains.

We also do not see much gain in time and memory usage. Once
more, the only domain where there is an observable reduction in
memory is organic-synthesis, where Y reduces the number of gener-
ated successors. However, in general, Y has an additional overhead
compared to FRSJ,< and thus the time saved by avoiding duplicated
states usually does not pay off.

Comparison to Ground Planners

We also compare the performance of our best method, FRSJ,<, to a
ground planner. For this experiment, we first use the breadth-first
search implemented in Fast Downward (Helmert, 2006), version 23.06.

The IPC set consists mostly of tasks that are easy to ground, so we
expect a Fast Downward to perform better than any of the methods
using Powerlifted. Indeed, Fast Downward solves 345 instances, while
FRSJ,< solves 262. Table 3.4 shows the results under the header “BFS”.

our algorithm, we consider A also as distinguished, so we keep all its instantiations.
There are more sophisticated solutions that we did not explore.

3.5 experimental results 39

BFS GBFS

FD FRSJ,< FD FRSJ,<

Coverage IPC set (1001) 345 262 683 603

blocksworld-large (40) 1 0 2 4

childsnacks-large (144) 9 4 32 26

genome-edit-distance (312) 48 44 312 312

logistics-large (40) 9 5 21 20

organic-synthesis (56) 21 44 21 49

pipesworld-tankage (50) 16 12 20 23

rovers-large (40) 3 0 15 4

visitall-multidimensional (180) 72 38 72 65

Coverage HTG set (862) 179 147 495 503

Table 3.4: Coverage comparison between Fast Downward (FD) and Power-
lifted with FRSJ,<. Using two different configurations: one with
breadth-first search (BFS); and one with greedy best-first search
(GBFS) using the goal-count heuristic.

Fast Downward was equal or superior to Powerlifted with the FRSJ,<

successor generator in all domains of this set.
On hard-to-ground domains, we expect Powerlifted to be more

competitive with Fast Downward. Table 3.4 also shows the results for
this set. The only domain where FRSJ,< improves the total coverage is
the organic-synthesis domain. In all other domains, Fast Downward
solves up to 5 instances more than Powerlifted, with one exception:
the visitall-multidimensional domain. In this domain, an agent must
visit a single cell in an n-dimensional grid, for 3 ≤ n ≤ 5 (Lauer et al.,
2021). Although this domain is challenging to ground because of the
many variables of actions and predicates, many tasks have short plans,
and so the search is relatively simple. In fact, Fast Downward found
plans for all tasks that it could ground in visitall-multidimensional.
As this domain is over-represented in the benchmark set, this ended
up skewing the total results as well.

Generally speaking for the HTG set, we expect Fast Downward’s
main bottleneck to be the grounding while the main bottleneck of
Powerlifted is the search. So our hypothesis is that guiding the search
with a more informed heuristic changes the results.

To test this hypothesis, we implemented the goal-count heuristic
(Fikes and Nilsson, 1971) in our planner. The goal-count heuristic
simply counts the number of ground atoms in the goal G that are
unsatisfied in the state being evaluated. We then use the goal-count

40 lifted successor generation

105 106 107

105

106

107

uns.

uns.

Fast Downward (lower for 31 tasks)

Po
w

er
lif

te
d

(l
ow

er
fo

r
4
0
6

ta
sk

s) blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 3.5: Peak memory (in kB) for Powerlifted with FRSJ,< and Fast Down-
ward on the HTG set. Both use the configuration with GBFS and
the goal-count heuristic.

heuristic to guide a greedy best-first search (GBFS). Goal-count is not
one of the most informed heuristics in the literature, but it has the
benefit of being action-independent, and therefore apt for both of
ground and lifted representations directly.

The second block of Table 3.4 (with header “GBFS”) shows how a
GBFS with goal-count performs in Fast Downward and Powerlifted
with FRSJ,<. We can see that the heuristic indeed had a larger benefit
for Powerlifted which now outperforms Fast Downward in total cov-
erage on the HTG set. With the heuristic, the search expands fewer
states which means the overhead of computing the successor states
is less relevant. A ground planner on the other hand requires the
same amount of effort to ground the task. This can be seen in the
organic-synthesis domain, where all tasks that Fast Downward fails to
solve, run out of memory. The same is true for the pipesworld-tankage
domain, where FRSJ,< solves 3 tasks that Fast Downward is not able to
ground. In Chapter 4, we will see that with more informed heuristics,
the gap between Powerlifted and ground planners in the HTG set
becomes even larger.

When comparing memory consumption, Powerlifted has a lower
memory consumption than Fast Downward in most tasks. Figure 3.5
plots the results of both planners when using GBFS with the goal-count
heuristic. Powerlifted with FRSJ,< consumes less memory in 406 tasks,
while Fast Downward is more memory efficient in 31 (only counting
those solved by both planners). The only domain where Powerlifted
with FRSJ,< consistently used more memory was the childsnacks-large
domain. In some domains (logistics-large, organic-synthesis, and most
of the genome-edit-distance tasks), the lifted planner used 2 or 3 orders
of magnitude less memory than Fast Downward.

3.5 experimental results 41

LAMA L-RPG FRSJ,<

Coverage IPC set (1001) 917 324 603

blocksworld-large (40) 12 0 4

childsnacks-large (144) 115 – 26

genome-edit-distance (312) 312 110 312

logistics-large (40) 36 0 20

organic-synthesis (56) 21 14 49

pipesworld-tankage (50) 18 11 23

rovers-large (40) 17 0 4

visitall-multidimensional (180) 72 19 65

Coverage HTG set (862) 603 154 503

Table 3.5: Coverage comparison between LAMA, L-RPG, and Powerlifted
with FRSJ,<. For Powerlifted, we run a greedy best-first search
using the goal-count heuristic. L-RPG fails to run in childsnacks-
large, but we could not identify the source of the problem.

Solving Hard-to-Ground Domains

To get a better understanding of our methods, we also compared
them to complete off-the-shelf planning systems. We compared our
methods to LAMA (Richter and Westphal, 2010) and to L-RPG (Ridder,
2013; Ridder and Fox, 2014). Table 3.5 show the coverage results of
LAMA and L-RPG in comparison to Powerlifted with FRSJ,<. LAMA
is a ground planner that has been considered state-of-the-art for more
than a decade, while L-RPG is the only PDDL planner using lifted
representations directly. LAMA is built on top of Fast Downward, so
it faces exactly the same grounding challenges as Fast Downward. L-
RPG implements an approximation of the FF heuristic (Hoffmann and
Nebel, 2001), computed directly over the lifted representation. (The FF
heuristic is discussed in detail in the next chapter.) Additionally, L-RPG
computes equivalence relations between objects to find symmetries.
However, L-RPG does not have a dedicated algorithm to generate
successor states: it simply enumerates all possible action instantiations
and checks for their applicability.

LAMA and GBFS with the goal-count heuristic in Fast Downward
perform similarly in many domains of the HTG set (organic-synthesis,
pipesworld-tankage, rovers-large, visitall-multidimensional). This re-
inforces the result that the main bottleneck of these domains is the
grounding and not the search itself. Adding a powerful search method
to a ground planner does not improve the coverage in these domains,
simply because the search itself is not the hardest part. In these do-

42 lifted successor generation

mains, the time and memory usage of LAMA is similar to GBFS with
goal-count: both run time and peak memory are dominated by the
grounding step.

On the other domains of the HTG set and on the IPC set, however,
LAMA is superior to the other methods. Grounding still consumes
a lot of time in these domains, but the search component of LAMA
is so powerful that it compensates for the grounding time. For these
domains, having a more informed lifted heuristic is beneficial too (see
Chapter 4).

The comparison to the L-RPG planner is very favorable to Power-
lifted, even though L-RPG uses a more informed heuristic to guide
the search. L-RPG aborted within seconds on all instances of the
childsnacks-large domain. Unfortunately, we were not able to iden-
tify why this happened, so we decided do not report values for this
domain. The total coverage of L-RPG in the HTG set is 154, while
Powerlifted with FRSJ,< solves 477 tasks (when not considering the
26 tasks solved on the childsnacks-large domain). These results show
that for hard-to-ground domains the successor generation is one of
the main bottlenecks for lifted planners. Our methods are also faster
than L-RPG in all tasks. In the smallest instances, just the computation
of the equivalence relations in L-RPG already takes more time than
Powerlifted takes to find a plan. In larger instances, our methods are
faster than L-RPG in spite of a less informed heuristic. This could be
due to L-RPG spending too much time instantiating action schemas
or to the lifted FF computation of L-RPG being too expensive in these
domains.

3.6 summary

In this chapter, we gave a first step towards a heuristic search planner
using a lifted representation. We studied how to efficiently perform
lifted successor generation in classical planning using well-known
database techniques. The problem of generating all ground actions
that derive from an action schema and are applicable in a given state is
equivalent to evaluating a query given by the schema precondition in a
database given by the state. Often, the action preconditions of standard
planning domains fall into the tractable case of acyclic conjunctive
queries.

Our planner, called Powerlifted, implements several successor gen-
erators based on query optimization techniques. We empirically eval-
uated these different methods for both the acyclic and cyclic action
schemas. Our results show that this approach has an acceptable over-
head in most standard benchmarks, and is a preferable alternative to
state-of-the-art ground planners in many domains that are hard to
ground.

3.6 summary 43

But there are still many ideas that could be tried out to improve
performance. In particular, it would be interesting to test other sorts
of structural decompositions (Gottlob et al., 2002), particularly for
cyclic actions. As we will see in Part ii in the context of grounding,
all action schemas in our benchmark sets have low (hyper)treewidth,
which means that certain structural decompositions could help with-
out being very expensive. Another potential topic of future research
is to study different decompositions (i.e., query programs, join trees)
for acyclic queries. We mentioned earlier that the full reducer and
Yannakakis’ algorithm can be phrased in terms of join trees. It is well-
known in database theory that different join trees can lead to very
different performances (Scarcello et al., 2007), although the asymptotic
complexity remains unchanged. In classical planning, this could also
have an observable impact.

In the next chapter, we move forward to study how to compute
informed heuristics over the lifted representation. Together with successor
generation, informed heuristic functions are key aspects of efficient
heuristic search planners. Our next goal is to compute delete-relaxation
heuristics only using information about the current state and the action
schemas. More informed heuristics lead to fewer expansions, which
reduces the overhead caused by lifted successor generation. As we
saw in the previous experiments, LAMA improved on GBFS with the
goal-count heuristic simply by using a more informed search. Our
objective is to obtain the same improvement on Powerlifted. However,
we will be faced with another problem: how to compute heuristics
efficiently in our setting?

chapter notes and history

We first developed Powerlifted in 2020 (Corrêa et al., 2020). Since
then, other lifted successor generation methods were built on top of
Powerlifted (e.g., Ståhlberg, 2023). This work also served as inspiration
for more recent lifted planners (e.g., Horčík and Fišer, 2021), which
also rely on database techniques to generate successors.

Our current implementation differs from the original one in a few as-
pects, which actually impact performance. There were two significant
issues with the original implementation of Powerlifted:

1. variables occurring in inequalities were not considered distin-
guished in Yannakakis’ algorithm, and

2. the full reducer and Yannakakis’ successor generators performed
the two traversals of the join-tree in the wrong order.4

These two issues were later fixed (Corrêa et al., 2021).
Planning techniques that do not depend on grounding long existed

(see chapter notes of Chapter 2), although recent research has focused

4 This problem was identified by Davide Mario Longo.

44 lifted successor generation

on ground planning. For instance, some planning-as-satisfiability ap-
proaches use encodings that avoid the need for grounding all actions
at preprocessing step by using propositions representing the actual
grounding of the action executed at each time step (Kautz et al., 1996;
Kautz and Selman, 1992; Robinson et al., 2008). Similar encodings
have been proposed in recent compilations of numeric and temporal
planning to SMT or CSP (Bit-Monnot, 2018; Bofill et al., 2016; Espasa
et al., 2019). Other approaches to planning, such as partial order plan-
ning, have also explored the use of lifted instead of ground actions
(Penberthy and Weld, 1992; Younes and Simmons, 2002, 2003). How-
ever, Powerlifted (and other modern lifted planners) have a crucial
difference: they perform a ground search, where while the representa-
tion of actions is lifted, the explored state space is still ground. This
is different from previous approaches in partial order planning (e.g.,
SNLP, UCPOP, VHPOP) that used partially ground actions and atoms
in the plan-space search — e.g., grounding only the variables of an
action that were relevant to validate a search node.

In the context of planning as heuristic search, the Unpop planner
by McDermott (1996) plans with lifted action schemas using simple
unification and regression techniques, but it was outperformed by
other contemporary heuristic search planners that used propositional
representations. Many of the heuristic search planning techniques
use some form of preprocessing that combines grounding with a
relaxation-based reachability analysis that avoids grounding some ac-
tions that can be proven not to be applicable in any state reachable
from the initial state (Helmert, 2009). The ground actions that result
from this procedure are often clustered in a decision-tree-like data
structure that speeds up the successor generation task by up to two
orders of magnitude on some IPC benchmarks (Helmert, 2006). The
query optimization techniques we present in this work are inspired
by the ones that Helmert (2009) applies to the grounding step, but we
apply them online, and explicitly exploit the acyclicity of precondition
queries. One can also try to use Helmert’s approach in the successor
generation.

More recent work in the context of lifted planning in the heuristic
search context includes the work by Ridder (2013). Ridder’s L-RPG
planner focuses more on lifted versions of standard heuristics than on
the successor generation task. We compared the performance of L-RPG
with our approach in the experimental results section, which offers
empirical evidence on the importance of an efficient lifted successor
generator.

Areces et al. (2014) develop an automatic action schema splitting
technique that reduces the number of parameters of action schemas,
at the cost of modifying the state space topology. Since theirs is a
model reformulation approach, it has the advantage that it can be
coupled with any planner. Gnad et al. (2019) present a machine-

3.6 summary 45

learning method that incrementally grounds larger and larger parts
of the full set of ground actions until a plan can be found. Lifted
approaches have also been considered for other planning-related tasks
such as the computation of problem invariants and symmetries (Fišer,
2020; Rintanen, 2017; Röger et al., 2018; Sievers et al., 2019).

Francès and Geffner (2016) implement a planner that exploits exis-
tentially quantified variables in preconditions and goal directly. They
show a connection between planning with existentially quantified
variables and constraint satisfaction problems. However, their planner
represents tasks propositionally. Francès (2017) implement a lifted
successor generator for FSTRIPS — STRIPS extended with function
symbols. His planner simply reduces the preconditions to a CSP and
then uses an off-the-shelf solver to compute the successors. However,
the implementation still requires that all reachable ground atoms (but
not actions) are known in advance. As we will see in the next chapters,
this is also not straightforward in all domains.

4
L I F T E D D E L E T E - R E L A X AT I O N H E U R I S T I C S

Heuristic search (Bonet and Geffner, 2001) is a successful approach
to ground planning. The main idea is to search for a solution in the
space of all applicable action sequences. Using a heuristic, the planner
focuses the search on promising sequences and thus speeds up the
process.

In the previous chapter, we showed how to implement an efficient
successor generation at a lifted level, but our planner still lacks a good
heuristic function to guide the search. To benefit from the advances
in ground planning, in particular in the area of heuristic search, we
need strong lifted heuristics as well. Moreover, our earlier results show
that stronger heuristics (which results in fewer expansions) will also
reduce the overhead of our lifted successor generator.

In this chapter, we study how to compute delete-relaxation heuristics
directly from the lifted representation. More specifically, we extend the
Datalog formulation of relaxed reachability by Helmert (2009) to
compute the additive heuristic hadd, the maximum heuristic hmax

(Bonet and Geffner, 2001), and the FF heuristic hFF (Hoffmann and
Nebel, 2001) over the lifted representation. We also show how to extract
other relevant information (e.g., useful atoms, preferred operators)
from the Datalog evaluation.

A first implementation of these heuristics gives good guidance
to the search, but they are too expensive to compete even with the
goal-count heuristic from the previous chapter. This straightforward
implementation grounds part of the (relaxed) state space to extract a
relaxed plan. In larger tasks, such as the ones in our HTG set, this can
be as expensive as grounding the entire task.

To tackle this problem, we introduce the notion of an annotated
Datalog program, where atoms and rules are associated with instruc-
tions. After evaluating a Datalog query, we execute the instructions
of all atoms and rules used to derive this query. This allows us to
collect a relaxed plan and compute the desired heuristics. Additionally,
this allows us to simplify annotated Datalog programs to make them
cheaper to evaluate, while still preserving the same heuristic values.
In our experimental results, Powerlifted with the lifted hFF heuristic
achieves state-of-the-art performance among lifted planners and is

47

48 lifted delete-relaxation heuristics

competitive with Fast Downward (Helmert, 2006) and LAMA (Richter
and Westphal, 2010) using a ground implementation of the heuristic.

4.1 delete-relaxation heuristics over ground tasks

As mentioned earlier (Chapter 2), computing optimal plans for a
ground delete-relaxed task Π+ is NP-complete (Bylander, 1994). But
there are approximations that compute (possibly) suboptimal plans
for Π+ in polynomial time (Bonet and Geffner, 2001; Hoffmann and
Nebel, 2001) or that give a lower bound to the length (or cost) of the
optimal plan for Π+ (Bonet and Geffner, 2001; Helmert and Domshlak,
2009).

We are interested in three delete-relaxation heuristics:

• the additive heuristic hadd (Bonet and Geffner, 2001; Keyder and
Geffner, 2008);

• the max heuristic hmax (Bonet and Geffner, 2001; Keyder and
Geffner, 2008); and

• the FF heuristic hFF (Hoffmann and Nebel, 2001).

The additive and the FF heuristic estimate the cost of a relaxed plan:
plans for the delete-relaxation Π+. This is a common source of heuris-
tic guidance on the non-relaxed task Π, where the length of the relaxed
plan can be used as a distance estimate. Both hadd and hFF are inad-
missible, so they cannot guarantee an optimal solution when used
with A∗, for example. The max heuristic, in contrast, underestimates
the cost of the optimal relaxed plan h+ (i.e., cost of the optimal plan
in Π+; see Chapter 2) and is then admissible.

Additive and Max Heuristic

We introduce hadd and hmax together, as they are analogous. Given
a ground planning task Π = ⟨P , C,A, I, G⟩,1 we define h(p, s) as the
cost of achieving ground atom p from a state s:

h(p, s) =

0, if p ∈ s

min
a∈Ap

cost(a) + ∑
q∈pre(a)

h(q, s)

, otherwise,
(4.1)

where Ap is the set of ground actions with p in the add list. This
system of equations has a unique maximal solution. If all actions have
costs larger than zero, the maximal solution is unique. We assume in
the rest of this chapter that costs are larger than zero — tasks originally

1 Recall that a ground task is simply a task where vars(a) = ∅ for all a ∈ A (Chapter 2).

4.1 delete-relaxation heuristics over ground tasks 49

Algorithm 1 Extract relaxed plan from computation of hadd.
Input: Evaluation of best achievers for every atom in the task,

after computing hadd.
Output: Relaxed plan π.

1: π := ⟨⟩
2: for g ∈ G do
3: BackChain(g)

4: return Reverse(π)

5: function BackChain(p)
6: if p /∈ I then
7: π.Add(ap)
8: for q ∈ pre(ap) do
9: BackChain(q)

return

with zero cost actions can be transformed so they have a small cost
ε > 0 cost. Moreover, we let min ∅ = ∞ so h(p, s) maps to R∪ {∞}.

The value of the additive heuristic hadd is then defined as additive heuristic

hadd(s) = ∑
p∈G

h(p, s). (4.2)

We can extract a plan from the computation of hadd. First, we define
the best achiever ap of an atom p as best achiever

ap = arg min
a∈A

p∈add(a)

cost(a) + ∑
q∈pre(a)

h(q, s). (4.3)

if p /∈ s, and ap = ∅ otherwise. We can back-chain from the goal
atoms through their best achievers to extract the plan. Algorithm 1

shows the pseudocode. Assume that π is a global variable. For each
atom g in the goal, the algorithm adds its best achiever ag to the plan,
and then continues back-chaining through the atoms in pre(ag). This
chaining continues until we reach an atom that is in the initial state
(p ∈ I). Note that we must reverse the order of π at the end.

When computing the cost to reach a precondition pre(a) = {p, q},
Equation (4.1) ignores that reaching p might help in reaching q too.
So hadd might overestimate the real cost to achieve the goal, and is
non-admissible.

Replacing the ∑ operator in (4.1) and (4.2) by the max operator
gives us the max heuristic hmax (Bonet and Geffner, 2001): max heuristic

h′(p, s) =

0, if p ∈ s

min
a∈Ap

cost(a) + max
q∈pre(a)

h′(q, s), otherwise,
(4.4)

hmax(s) = max
p∈G

h′(p, s). (4.5)

50 lifted delete-relaxation heuristics

We can view hmax as an optimistic version of hadd: hmax assumes
that the cost to achieve a set of atoms is the same is achieving its
most expensive component individually; hadd assumes that the cost
to achieve the set is the sum of all parts. In contrast to hadd, hmax is
admissible, as the cost of achieving a set of atoms cannot be lower
than the cost of achieving each of the atoms in the set individually.

FF Heuristic

The hadd heuristic assumes that there is no positive synergy when
achieving action preconditions. To solve this issue, Hoffmann and
Nebel (2001) introduce the FF heuristic, hFF.FF heuristic

Let ap be the best achiever of p as in (4.3).2 Let also

π(p) =

{}, if p ∈ s

{ap} ∪
⋃

q∈pre(ap) π(q), otherwise.
(4.6)

If we fix ap for each reachable atom p and if G is reachable, we can
compute a unique solution to these equations by recursively evaluating
it starting from G. Let π(G) =

⋃
g∈G π(g). In this case, π(G) can be

sequenced into a relaxed plan πFF and the FF heuristic is defined as
hFF(s) = cost(πFF). If G is not reachable in the delete relaxation, then
hFF(s) = ∞.

The FF heuristic hFF (Hoffmann and Nebel, 2001) is part of state-of-
the-art ground planners since its creation (e.g., Richter et al., 2011).

4.2 lifted relaxed reachability

Instead of directly discussing how to compute hadd, hmax, and hFF

with a lifted representation, we start with a simpler problem: how to
compute all atoms that are reachable in a lifted delete-relaxed task?

For a given planning task Π = ⟨P , C,A, I, G⟩ and a state s, Helmert
(2009) encodes Π+ as a Datalog program Ds = ⟨F ,R⟩. The set of
facts F contains all ground atoms in s, and R is defined as follows:
for each action schema a(T) ∈ A with variables T and pre(a(T)) =
{p1(T1), . . . , pn(Tn)}, R contains the action applicability ruleaction applicability

rule
a-applicable(T)← p1, (T1) . . . , pn(Tn).

where a-applicable(T) is an action applicability atom using the freshaction applicability
atom predicate symbol a-applicable.

For each qi(Ti) ∈ add(a(T)), R also contains the action effect ruleaction effect rule

qi(Ti)← a-applicable(T).

Last, R also contains a goal rulegoal rule

2 There are different ways to select the best achiever of an atom. While Hoffmann and
Nebel choose the best achievers based on hmax, Keyder and Geffner (2008) do so with
hadd. We follow Keyder and Geffner — see Equation (4.3).

4.2 lifted relaxed reachability 51

goal← g1, . . . , gm.,

where goal is a fresh predicate symbol, and the body of the goal rule
contains all (ground) atoms in the goal G = {g1, . . . , gm} of the task.

Note that each action schema a then produces 1+ |add(a)| rules. We
assume all actions have at least one precondition and add a dummy
precondition if this is not the case.

Helmert (2009) shows that the canonical modelM of Ds contains
exactly

(i) all ground atoms reachable in Π+,

(ii) a ground atom a-applicable(c1, . . . , cm) if and only if the ground
action a(c1, . . . , cm) is applicable in some reachable state of Π+,
and

(iii) the atom goal iff Π+ is solvable, i.e., atoms in the goal G are
reachable from the initial state I in Π+.

If an atom is present in M, then it is a relaxed reachable atom. If the relaxed reachable

atom goal in the head of the goal rule is relaxed reachable, then the
task is relaxed solvable. Given a delete-relaxed task Π+ with initial state relaxed solvable

I, we denote its associated Datalog program as DI .

Example 4.1 Consider Example 2.4, from Chapter 2. The delete-relaxation
Π+ = ⟨P , C,A+, I, G⟩ of this planning task is defined as

P = {at/2, adj/2}
C = {a, b, c, t}
A = {drive+(T, C1, C2)}
I = {adj(a, b), adj(b, a),

adj(b, c), adj(c, b),

at(t, a)}
G = {at(t, c)}.

The action schema drive+(T, C1, C2) has the following precondition and add
list:

pre(drive+(T, C1, C2)) = {at(T, C1), adj(C1, C2)}
add(drive+(T, C1, C2)) = {at(T, C2)}

(It does not have a delete list as it is a delete-relaxed action.)

52 lifted delete-relaxation heuristics

Algorithm 2 ComputingM for a Datalog program D = ⟨F ,R⟩

1: queue := Queue(Atom)
2: M := ∅
3: for fact ∈ F do
4: queue.Push(fact)

5: while not queue.Empty() do
6: p := queue.Pop()
7: if p /∈ M then
8: M :=M∪{p}
9: for (head← body) ∈ UnifyRules(p,M,R) do

10: queue.Push(head)

11: returnM

12: function UnifyRules(p,M,R)
13: return {(head← body) ∈ Ground(R) | p ∈ body, body ⊆M}

Its relaxed reachability Datalog program DI is the following program:

adj(a, b).

adj(b, a).

adj(b, c).

adj(c, b).

at(t, a).

drive+-applicable(T, C1, C2)← at(T, C1), adj(C1, C2).

at(T, C2)← drive+-applicable(T, C1, C2).

goal← at(t, c).

Helmert (2009) uses an algorithm similar to seminaive evaluation
(see Chapter 2) on relaxed reachability Datalog programs to ground
planning tasks. Algorithm 2 shows the pseudocode of Helmert’s algo-
rithm. As in the seminaive evaluation, Algorithm 2 builds the model
M iteratively. It first adds all facts F to a queue of atoms named queue.
Then, it iteratively removes atoms from the queue. If the removed
atom a is not yet inM, we add a to it. We then unify the bodies of all
possible rules in R using a together with other atoms already inM.
For each unified rule, we add its head atom to the queue. The algo-
rithm terminates once queue is empty. Instead of processing atoms in
batches (atoms produced during the first iteration, during the second
iteration, etc.) as in the seminaive evaluation, Algorithm 2 explores
one atom at a time. At the end of its execution, M is the canonical
model.

4.3 datalog-based heuristics 53

4.3 datalog-based heuristics

We can adapt the lifted reachability analysis by Helmert (2009) to
compute the hadd, hmax, and hFF heuristics. We start with hadd and
hmax.

Given a planning task Π, a state s, a relaxed reachability Datalog
program Ds = ⟨F ,R⟩, we assign a weight w(r) to each rule r ∈ R. If r
is a action applicability rule corresponding to action a, then w(r) =
cost(a). All other rules have weight 0. We call this extension a weighted
Datalog program. For a given rule r, we write w(r) on the← symbol weighted Datalog

to indicate its weight. For example, the following rule ra

a-applicable 10← q.

indicates that w(ra) = cost(a) = 10. When a rule has weight of 0, we
do not write it down on the← symbol.

We then consider a function v that is a maximal solution for the
following equations:

v(p) =

0, if p ∈ F

v(f add(p)), otherwise,
(4.7)

v(r) = w(r) + ∑
q∈body(r)

v(q) (4.8)

f add(p) ∈ arg min
r∈Ground(R)

head(r)=p

v(r). (4.9)

Equations (4.7) and (4.8) are defined over M and equation (4.9) is
defined over Ground(R). This system of equations also has a unique
maximal solution if all actions have costs larger than zero. Once more,
in tasks with zero cost actions, these are considered to have a small
cost of ε > 0.

The system of equations above is equivalent to Equations (4.1),
but using Datalog program instead of planning tasks. All atoms p
reachable in Π+ have v(p) = h(p, s): every atom f ∈ F has v(f) =
0 = h(f , s); an atom p reachable in Π+ but not in F is reachable via
an effect rule, so

v(p) = v(f add(p))

where f add(p) is an effect rule r1 of the form3

r1 = p← a-applicable.

This implies that

v(p) = v(f add(p))

= w(r1) + v(a-applicable).

3 We omit the parameters of all atoms here, as they play no role in our argument, to
simplify the presentation.

54 lifted delete-relaxation heuristics

But w(r1) = 0 (by definition) and v(a-applicable) = v(f add(a-applicable).
As the only rules with predicate symbol a-applicable in the head are
action applicability rules, f add(a-applicable) must be an action appli-
cability rule r2 of the form

r2 = a-applicable
cost(a)← q1, . . . , qn.,

therefore

v(p) = v(f add(p))

= w(r1) + v(a-applicable)

= 0 + v(f add(a-applicable))

= w(r2) + v(q1) + · · ·+ v(qn)

= cost(a) + v(q1) + · · ·+ v(qn) [def. of rule weight]

which is the same as h(p, s) in (4.1), when q1, . . . , qn are the precondi-
tions of a.4

Then hadd over a lifted relaxed reachability program is equivalent to
the following:

hadd(s) = v(goal). (4.10)

The max heuristic hmax can be computed over the lifted relaxed
reachability program by simply replacing the summation in Equa-
tion (4.8) with a max operator, as done in (4.4) and (4.5).

A derivation is a sequence of atoms from F and ground rules fromderivation

Ground(Ds) where all atoms in the body of a rule either

• occur earlier in the derivation, or

• are heads of rules that appear earlier in the derivation.

An atom p in a derivation is a proof that p ∈ M, while for a rule
r, it proves that head(r) ∈ M. We assume that each atom is derived
at most once. If the last atom derived is p, we call the derivation a
derivation of p.

An achiever choice function f : M\F → Ground(R) maps atoms p
to ground rules r with head(r) = p. Given an achiever choice function,
we can construct a derivation of an atom by back-chaining through the
atoms in achiever bodies. This back-chaining is similar to the extraction
of the relaxed plan from hadd and hFF in the ground case (Algorithm 1).
For each atom inM\F that was not seen earlier, we recursively add
its derivation to the start of the sequence. Equation (4.9) defines the
f add achiever choice function, which uses hadd values to choose the
achiever of each atom. This is analogous to (4.3) for computing the

4 Note thatM has more atoms than the set of reachable atoms in Π+ — namely, atoms
goal and of the form a-applicable. They are not necessary to argue that v(p) = h(p, s)
for relaxed reachable atoms p.

4.3 datalog-based heuristics 55

Algorithm 3 Computing v for a weighted Datalog program D =

⟨F ,R⟩

1: V := DefaultHashTable(Atom, R∞, ∞)
2: queue := PriorityQueue(Atom, R+)
3: M := ∅
4: for fact ∈ F do
5: V[fact] := 0
6: queue.Push(fact, 0)

7: while not queue.Empty() do
8: p := queue.PopMin()
9: if p /∈ M then

10: M :=M∪{p}
11: for (head w← body) ∈ UnifyRules(p,M,R) do
12: cost := w + ∑q∈body V[q]
13: if cost < V[head] then
14: V[head] := cost
15: queue.Push(head, cost)

16: return V

best achiever on propositional tasks. Extending the terminology, we
call the achiever f add(p) as the best achiever of p.

After computing hadd, we can extract a relaxed plan similarly to the
ground planning case. Given the derivation of goal, we can create a
plan composed by all the action applicability atoms in the derivation.

The question now is how to evaluate v. We can do so v while
computing M using a modification of Algorithm 2. Algorithm 3

shows this modification. We store the v-value of each reached atom in
a hash table V (line 1). The queue is ordered according to v (line 2).
Whenever we generate a new atom p (line 11), its v-value is computed
according to (4.7) (line 13). This order implicitly defines the achiever
choice function f add satisfying (4.9).

Algorithm 3 works as a generalized Dijkstra’s algorithm, so we
can use an early stopping approach: when we remove goal from the
queue, the algorithm can stop, as v(goal) is already defined, and we
can extract the heuristic value.

the ff heuristic

Algorithm 3 implicitly constructs a derivation with an achiever choice
function that maps head(r) to r. Note that the achiever choice function
depends on how the queue breaks ties.

We can compute hFF from M considering the derivation of goal
for the achiever choice function f add in (4.9). When back-chaining
from goal, we collect all atoms P in its derivation. Let the set π′FF ⊆ P
be the set of all action applicability atoms, i.e., atoms of the form

56 lifted delete-relaxation heuristics

a-applicable(X). For the computed derivation, this set π′FF matches
the set of all actions a with parameters X for which a-applicable(X)

is necessary to derive the goal. This is analogous to (4.6) but in terms
of atoms, not ground actions. We can then compute hFF for a state s as

hFF(s) = ∑
a-applicable∈π′FF

cost(a). (4.11)

4.4 problems with our approach

Unfortunately, we do not expect our approach to scale to larger prob-
lems. In some domains, even if we stop Algorithm 3 as soon as it
derives the goal atom, the effort necessary to find this derivation is
too large. Often, this approach is as expensive as grounding the entire
task. Moreover, because we use it to evaluate heuristics and guide the
search, we must repeat this procedure for every visited state.

A culprit of this problem are the action applicability atoms — i.e.,
a-applicable(T). They contain all the variables in the action, so their
arities are much larger than the other predicates. Instantiating these
atoms is equivalent to grounding actions.

We can simplify our relaxed reachability Datalog programs by re-
moving the atoms a-applicable(T). To do so, we combine the action
applicability rule

a-applicable(T)
cost(a)← q1, . . . , qn

with the action effect rule

p← a-applicable(T)

into a new action rule

p
cost(a)← q1, . . . , qn

for each add effect p of action schema a.
However, we now do not have enough information to compute

Equation (4.11). Therefore, we need to find new ways of computing
hFF over the lifted representation. As a first approximation, we consider
a heuristic that just adds the weights of all rules in a derivation of G.
We call it the rule-based FF heuristic and denote it as hR-FF.rule-based FF

heuristic Where hFF computes a relaxed plan, hR-FF computes a set of ground
rules that are sufficient to derive the goal atom. The main difference
between hR-FF and hFF is that hR-FF might count the cost of the same
action multiple times. This occurs when the action adds several atoms
that are necessary to reach the goal.

4.5 annotated datalog 57

Example 4.2 Consider the following relaxed reachability Datalog program,
in a state s = {p(c)}, and consider that cost(a) = 1:

p(c).

a-applicable(X)
1← p(X).

q(X)← a-applicable(X).

t(X)← a-applicable(X).

goal← q(c), t(c).

The value of the FF heuristic is hFF(s) = 1.
Once we simplify the program by removing the predicate a-applicable, we

obtain the program

p(c).

q(X)
1← p(X).

t(X)
1← p(X).

goal← q(c), t(c).

where hR-FF(s) = 2, because both rules — the one deriving q(c) and the one
deriving t(c) — are counted separately.

This is similar to hadd but hadd counts the cost of an action every time
one of its effects is used whereas hR-FF counts the cost of an action at
most once for each of its effects. Our hypothesis is that actions usually
add very few atoms that are necessary to reach the goal and thus the
values of hR-FF and hFF are close.

An alternative way to think of hR-FF is using a task transformation
that replaces every action schema a where add(a) = {p1, . . . , pn} with
n new action schemas a1, . . . , an where add(ai) = {pi}. For any state s
in this transformation, hR-FF(s) = hFF(s).

The intention of hR-FF is to approximate h+, so over-counting ac-
tions by treating their effects separately means that the heuristic loses
accuracy. In the next section we introduce a general framework for
associating a computation with a Datalog program. We will then show
how hFF can be computed in this framework without loss of accuracy,
even without the action applicability atoms.

4.5 annotated datalog

An annotated Datalog program is a Datalog program where every fact
p ∈ F and every rule r ∈ R is annotated with a sequence of in-
structions denoted ann(p) and ann(r). An instruction can refer to the instructions

variables used in the rule. It represents a (sequence of) commands
to be executed. We assume that instructions allow for commands of
traditional programming languages (e.g., C++), but we do not fully

58 lifted delete-relaxation heuristics

Algorithm 4 Executing an annotated Datalog program.
1: function BackChain(p)
2: if visited[p] then
3: return
4: visited[p] := True
5: if p ∈ F then
6: Execute(ann(p))
7: else
8: for q ∈ Body(f add(p)) do
9: BackChain(q)

10: Execute(ann(f add(p)))

formalize it. When a rule with instruction I is grounded with sub-
stitution σ : V 7→ C, we consider the ground rule to have instruction
σ(I).

The semantics of an annotated Datalog program Ds are relative to
a derivation of an atom p. Recall that a derivation is a sequence over
F ∪Ground(D). To execute a Datalog program for the derivation of p,
we map each element of this sequence to its associated instruction and
execute the instructions in this order.

Algorithm 4 shows how to find a derivation of an atom and execute
the Datalog program for it. The idea is similar to Algorithm 1, used
to extract relaxed plans using the best achievers. The back-chaining
procedure in Algorithm 4 handles each atom at most once (lines 2–4).
Facts in F need no further derivation, so their annotation is executed
directly (lines 5–6). For other atoms, the algorithm ensures that their
derivation is included and the corresponding instructions are executed
before executing the instructions of the achiever (lines 8–10).

We demonstrate that annotated Datalog programs are useful by
expressing different concepts in them. We base all examples on the
Datalog program Ds and the achiever choice function f add, as defined
in (4.9). Other achiever choice functions, such as the one based on
hmax, are also possible but they can produce different results. In fact,
the execution of the annotations could depend on the order that
atoms are explored in Algorithm 4. The annotations we present next,
however, are well-defined for a fixed achiever choice function, and do
not depend on the exact order we execute them.

Useful Atoms

Given a relaxed plan π+, an atom is useful (Hoffmann and Nebel, 2001)useful atom

if

1. it appears in the goal G, or

2. it is in the precondition of some action a in π+, where a has
another useful atom in its add list.

4.5 annotated datalog 59

In other words, a useful atom is either a goal atom or an atom in the
precondition of an action used to reach another useful atom.

A preferred operator (Helmert, 2006), also referred to as helpful actions preferred operator

in the literature (Hoffmann and Nebel, 2001), is a ground action
having a useful atom in its add list.5 These are considered particularly
promising on a given state, typically because they are part of a relaxed
plan or because they can make actions of this plan applicable. This
information can be explored in different contexts. For example, a
search algorithm might give priority to states generated via preferred
operators (Richter and Helmert, 2009; Richter and Westphal, 2010).

In Ds, useful atoms are those occurring in a derivation of the goal
except for F and atoms of the form a-applicable(X). To compute them
with annotated Datalog programs, we use the annotation

ann(r) = [Mark head(r) as useful]

for all action effect rules r ∈ R, and an empty annotation for all action
applicability rules and all f ∈ F .

Given f add, this annotation is well-defined. All useful atoms in the
derivation are marked as such, independently of the order they are
visited.

In our search algorithms later, we extract useful atoms and use it to
select preferred actions in the successor generation step (Chapter 3).
Whenever we generate the successors of a state, we check, for each
applicable actions, if it has a useful atom in its add list and, if so, we
mark it as preferred. There are other possible mechanisms to exploit
useful atoms (Hoffmann and Nebel, 2001).

Rule-Based FF

The heuristic hR-FF can also be expressed with an annotated Datalog
program. For each action a, we annotate its corresponding action effect
rules r with

ann(r) = [Add cost(a) to h]

and use an empty annotation in all other cases. The variable h behaves
as a global variable for all annotations, and it contains the value of
hR-FF(s) after the execution. If the atom goal was derived, h is initialized
as 0; otherwise as ∞.

For a fixed choice of the best achievers, as with f add, this annotation
is also well-defined: each action effect rule r in the derivation will
add its corresponding cost to the global h-value. As the final value is
not influenced by the order these additions occur, the annotation is
well-defined and independent on the exact order we execute them.

5 In Fast Downward (Helmert, 2006), which we use later in our experiments, preferred
operators are exactly those ground actions occurring in the relaxed plan found by
hadd. In the FF planner (Hoffmann and Nebel, 2001), helpful actions are those that
are selected in the first layer of the derivation. Thus, our definitions differ.

60 lifted delete-relaxation heuristics

FF

To compute the FF heuristic using annotations, we construct the re-
laxed plan πFF — see (4.6) and the definition of πFF after it — as we
back-chain from the derivation of goal. Here, we consider that πFF is a
global variable to all annotations.

For all actions a we annotate the corresponding action applicability
rule r = a-applicable(X)← q1, . . . , qn with

ann(r) = [Include a(X) in πFF]

and use empty annotations in all other cases. When executing an
instruction for an atom p, if p /∈ s, the instruction adds the achiever
a(X) = ap to πFF. After the execution of p, the variable πFF contains
all actions of π(p). The base case of p ∈ s is trivial (π(p) = ∅). In
the inductive step, the achiever choice of p is A = f add(p) which is
added to πFF by the annotation of the rule achieving p. The actions
required to achieve preconditions of this action are already included
in πFF according to the induction hypothesis. As the derivation of p
only relies on actions in π(p), no additional actions are included in
the set, so πFF has the value of π(goal) after the execution for goal.

This annotation is also independent of the order Algorithm 4 com-
putes the derivation of G, assuming a fixed achiever choice function.
Every action applicability rule r in the derivation is added to the set
πFF at some point, and adding elements to a set in different orders
does not affect the final result.

4.6 transformations of annotated datalog

We introduced rule-based FF specifically because removing action
predicates is important for performance. Yet, all examples above use
action predicates. To make use of this optimization, we now dis-
cuss how such optimizations can be done on any annotated Datalog
program without changing its semantics. Moreover, we are not only
limited to the removal of action predicates.

We introduce four generic transformations of annotated Datalog
programs:

(i) rule merging,

(ii) rule decomposition,

(iii) predicate collapsing, and

(iv) variable renaming.

These transformations change the set of rules and predicate symbols
used in the program which affects the derivations and thus the seman-
tics of the program. However, we can still show that the semantics

4.6 transformations of annotated datalog 61

before and after any transformation are equivalent in the following
sense: for any derivation under an achiever choice function f in the
transformed program, there is a derivation under an achiever choice
function f ′ in the original program such that the execution of both
programs under these derivations produces the same results. More-
over, in our use case, all atoms of the planning task that have a certain
v-value under f have the same v-value under f ′. This implies that
any execution based on f add achievers in the transformed program
corresponds to an execution in the original program for one of the
possible choices of f add achievers.

Rule Merging

Rules can be merged to eliminate intermediate atoms. This was the rule merging

optimization we used when defining hR-FF, where we removed atoms
of the form a-applicable(X) from Ds. For an atom p let R+

p ⊆ R be
the rules with head p and let R−p ⊆ R be the rules where the body
contains p. Rules can be merged if

• R+
p and R−p do not overlap,

• there are no other rules or facts with the same predicate symbol
as p,

• no rule has the atom goal in the head.

With some abuse of notation, the set of merged rules R′ contains the
rule

r± = head(r−)← (body(r−) \ {p}) ∪ body(r+)

for every combination of rules r+ ∈ R+
p and r− ∈ R−p .6 The weight

of the merged rule is w(r±) = w(r+) + w(r−) and its annotation is
ann(r±) = [ann(r+);ann(r−)].

We can then replace R by (R \ (R+
p ∪R−p)) ∪R′.

Example 4.3 Consider the following rules:

r1 = a-applicable(X, Y, Z) w← q1(X), q2(X, Y), q3(Y, Z).

r2 = p1(Y, Z)← a-applicable(X, Y, Z).

r3 = p2(Y, Z)← a-applicable(X, Y, Z).

They can be replaced by the rules

r1,2 = p1(Y, Z) w← q1(X), q2(X, Y), q3(Y, Z).

r1,3 = p2(Y, Z) w← q1(X), q2(X, Y), q3(Y, Z).

6 There might be a collision of variable names when merging rules. This can be solved
by first mapping vars(p) to its corresponding names in r−, and mapping all other
variables in vars(r+) \ vars(p) to fresh names.

62 lifted delete-relaxation heuristics

Assume we want to compute hFF and useful atoms, then ann(r1) would be
[Include a(X) in πFF] and ann(ri) = [Mark head(ri) as useful] for
i ∈ {2, 3}. In that case, we have

ann(r1,i) = [Include a(X) in πFF;

Mark head(ri) as useful].

A derivation that uses a ground rule r− ∈ Ground(Ds) must contain
a ground rule f (p) ∈ Ground(Ds) to derive p, where f (p) is the
achiever of p. Those two rules can be replaced by their corresponding
ground merged rule r± in the transformed program. Likewise, a
merged rule in a derivation for the transformed program can be
replaced by its components in the original program. The derived
value, its v-value, and the sequence of executed instructions is the
same.

In words, rule merging “shortcuts” some rules in the derivation: for
every rule r with p ∈ head(r) and every rule r′ with p ∈ body(r′), we
replace p in body(r′) with body(r).

Rule Decomposition

The rule decomposition transformation divides rules with large bodiesrule decomposition

into multiple smaller rules. The goal is to create an implicit join
tree for the rules of the Datalog program (Helmert, 2009): we split
the rule into smaller rules, while storing the intermediate results in
a new predicate. These smaller rules are simpler to unify, and by
decomposing them, we give guidance to our algorithm on which
atoms to join. Let r = p← q1, . . . , qn be a rule in an annotated Datalog
program and let 1 ≤ k ≤ n. Let X be the set of variables defined as

X =

(⋃
k+1≤i≤n

vars(qi)

)
∩
(⋃

1≤i≤k

vars(qi) ∪ vars(p)

)
.

By introducing a new predicate symbol aux, rule r can be split into
two rules

r1 = aux(X)← qk+1, . . . , qn.

r2 = p← q1, . . . , qk, aux(X).

with w(r1) = 0 and w(r2) = w(r). The annotation ann(r1) stores
the values of the variables

⋃
k+1≤i≤n vars(qi) that r1 depends on. The

annotation ann(r2) is the same as ann(r) but replacing those variables
by the values stored by ann(r1).

Example 4.4 Rule r1,2 = p1(Y, Z) ← q1(X), q2(X, Y), q3(Y, Z) from Ex-
ample 4.3 can be split into

r1 = aux(Y)← q1(X), q2(X, Y),

r2 = p1(Y, Z)← aux(Y), q3(Y, Z)

4.6 transformations of annotated datalog 63

If r1,2 had the annotation [Add a(X, Y, Z) to πFF] the new rules would
have the annotations

ann(r1) = [Instantiation[aux(Y)] = (X, Y)]

ann(r2) = [(X, Y) = Instantiation[aux(Y)];

Add a(X, Y, Z) to πFF].

Executing ann(r) has the same effect as executing ann(r2) after ann(r1).
As aux never occurs outside r1 and r2, any achiever choice function for
aux(X) must map to r1 ground with X. In a derivation, this rule will
therefore occur before r2 leading to the execution of ann(r1) before ann(r2).
So, rule decomposition does not change the semantics of the annotated Datalog
program.

Rule decomposition is a program rewriting technique (Ullman, 1988,
1989). There are different possibilities on how to choose the exact split
(Bichler et al., 2016; Helmert, 2009; Morak and Woltran, 2012). This
may reduce the computational effort to construct the canonical model
M when using our algorithms described above. Assume q1(a) was just
removed from the queue and we have to find a rule r ∈ Ground(r1,2)

such that body(r) ⊆M. If we first join q1(X) with q3(Y, Z) we could
get a larger intermediate result than if we first join with q2(X, Y). In
the split rules, only the efficient join is possible.

Predicate Collapsing

When the atoms of two predicate symbols p1 and p2 are reachable
in the same ways throughout the Datalog program, we know that if
p1(X) has a certain derivation, then p2(X) has the same derivation.
In other words, the relations p1 and p2 are symmetric. In that case,
we can replace p1(X) with p2(X) without changing the semantics of
the Datalog program. Before we express this formally, we look into an
example.

Example 4.5 Consider a Datalog program with following rules:

r1 = p1(X)← q(X, Y), t(Y).

r2 = p2(X)← q(X, Y), t(Y).

r3 = t(Z)← q(Z, Y), p1(Y).

r4 = t(Z)← s(Z, Y), p2(Y).

where the weights and annotations of r1 and 2 are identical. In this example,
we can replace p1 by p2 without affecting the semantics:

r′1 = p2(X)← q(X, Y), t(Y).

r2 = p2(X)← q(X, Y), t(Y).

r′3 = t(Z)← q(Z, Y), p2(Y).

r4 = t(Z)← s(Z, Y), p2(Y).

64 lifted delete-relaxation heuristics

Note that since the rules of a Datalog program are a set, r′1 and r2 become
identical, so the resulting Datalog program only contains three rules. Reduc-
ing the number of predicate symbols also reduces the size ofM, which might
speed up the computation of the heuristics.

The optimized program has the following rules:

r2 = p2(X)← q(X, Y), t(Y).

r′3 = t(Z)← q(Z, Y), p2(Y).

r4 = t(Z)← s(Z, Y), p2(Y).

Formally, a predicate p1 and p2 can be collapsed if for each rulepredicate collapsing

r1 = p1(X)← q1, . . . , qn.

there is a rule

r2 = p2(X)← q1, . . . , qn.

with ann(r1) = ann(r2) and w(r1) = w(r2), and vice-versa. Remember
that every p ∈ F is equivalent to a rule with an empty body, i.e.
p ← ⊤. If we replace p1 by p2, any derivation of G in the resulting
Datalog program corresponds to a derivation in the original program
and the v-values of all derived facts and rules remain the same.

Predicate collapsing is useful together with the rule decomposition
techniques. If we have multiple rules that have similar decompositions
(i.e., are decomposed into the same smaller rules), we can collapse
all the new auxiliary predicates that were introduced during the
decomposition.

Variable Renaming

Variable names used in a rule r have no impact on the canonical
model or the back-chaining through a derivation. They can be renamedvariable renaming

without changing the semantics of a Datalog program as long as the
variables occurring in ann(r) are renamed accordingly.

Similarly to predicate collapsing, variable renaming is useful when
combined with other techniques. Variable renaming might make two
rules identical,7 so we can keep only one of them. When decompos-
ing rules, there are cases where we can only collapse the auxiliary
predicates if we rename the variables to something canonical.

4.7 experimental results

We implemented the Datalog-based heuristics in Powerlifted. All our
configurations use the successor generator FRSJ,<, based on the full-
reducer (Chapter 3).

We tested the following configurations:

7 To be identical, we also consider that their annotations must be the same.

4.7 experimental results 65

(i) the lifted hadd, hR-FF, and hFF heuristics;

(ii) the lifted goal-count heuristic hgc from Chapter 3;

(iii) the lifted hgc heuristic using the unary relaxation with disambigua-
tion heuristic hgc, ur-das a tie-breaker (Lauer et al., 2021). This is a
relaxation that transforms any n-ary predicate p(X1, . . . , Xn) into
n different unary predicates p1(X1), p2(X2), . . . , pn(Xn), unless
they are static (i.e., do not appear in the effect of any action). This
is the best configuration in the experimental results by Lauer
et al.; and

(iv) the ground versions of hmax and hFF from Fast Downward
(Helmert, 2006).

In some of our experiments, we tested different search algorithms
(both lifted and ground versions). First, for experiments with the
admissible heuristic hmax, we used the A∗ search algorithm. Second, we
also use greedy best-first search (GBFS), as done in previous chapters.
Third, we use a GBFS but with deferred evaluation (Helmert, 2006). deferred evaluation

Deferred evaluation algorithms do not evaluate a state when generated,
but only when expanded. States are added to the open list with the
h-value of their parent. We call lazy GBFS when it uses deferred lazy GBFS

evaluation, and eager GBFS when it does not. Deferred evaluation does eager GBFS
not influence the completeness of GBFS, but it might save time by
avoiding computing the h-value of some states. As our lifted heuristics
might be expensive to compute, we expect it to pay-off.

Richter and Helmert (2009) show that deferred evaluation paired
with delete-relaxation heuristics can reduce the number of evaluations,
but also that on its own, deferred evaluation can make the performance
of the planner worse, as it makes the search less informed. Indeed,
deferred evaluation works best when combined with additional mech-
anisms, such as preferred operators (Helmert, 2006; Hoffmann and
Nebel, 2001). For example, the planner can use them to prune states
not generated by preferred operators (at the price of making the search
incomplete), or to prioritize such states when selecting the next state
for expansion.

In our implementation of lazy GBFS, we use two open lists and
alternate between them when selecting the next state for expansion.
Both open lists are ordered by the same heuristic, but one of them
— the preferred list — contains only states generated via preferred
operators. Instead of alternating at each expansion (once the preferred
list; once the non-preferred), we use a boosted dual-queue approach
(Richter and Helmert, 2009): we keep a counter for each open list,
initialized to 0. Whenever a state is removed from an open list, the
priority of that list decreases by 1. At each iteration, the next state is
removed from the list that has higher priority. When the search makes
progress (i.e., whenever it finds a state with a lower h-value than any

66 lifted delete-relaxation heuristics

Transformations
Action applicability rules

not merged merged

A
ux

ili
ar

y
Pr

ed
ic

at
es not collapsed 1072 1144

not collapsed + VR 1069 1139

collapsed 1088 1176

collapsed + VR 1100 1244

Table 4.1: Coverage of hFF with eager GBFS on both benchmark sets (1863
tasks) under different Datalog transformations. All runs include
the rule-splitting transformation.

state before), the priority of the preferred list is “boosted” by adding
1000 to its counter.

We refer to the eager GBFS simply as “Eager”, and to the lazy GBFS
with the boosted dual-queue approach as “Lazy + PO”.

Transformations

Our first experiment studies which transformation (Section 4.6) are
beneficial to the planner’s performance. To test this, we ran all combi-
nations of rule merging, predicate collapsing and variable renaming
(VR).

There are different ways to decompose rules. Here, we use the rule
decomposition by Helmert (2009). His grounder requires all rules
of the Datalog program to be in a specific form ensured by rule
decomposition. Every rule of the Datalog program must either be a
rule of the form

h(T)← b1(T1), b2(T2).

where vars(T) ⊆ (vars(T1) ∪ vars(T2)), or of the form

h(T)← b1(T1).

where vars(T) ⊂ vars(T1). The first rule is called a join rule, and
the second a projection rule. The decomposition procedure picks an
original rule with more than two atoms in the body, and iteratively
decomposes it by replacing one or two atoms (depending on whether
the new decomposed rule is a join or a projection rule) with a new one
— as in Example 4.4. We will revisit this rule decomposition procedure
in greater detail in Chapter 6. In our implementation, we tried to be
as similar as possible to Helmert’s algorithm to better compare it with
ground planners later. Thus, we cannot disable rule decomposition in
our experiments, and we use the same method to decompose rules.

Table 4.1 shows the coverage of Eager GBFS with hFF after differ-
ent transformations. The conclusions are the same if we use other

4.7 experimental results 67

heuristics or the Lazy + PO GBFS, so we do not detail these other
results. All transformations are beneficial and in particular removing
action predicates by merging rules is critical for performance. Using all
transformations achieves the best performance, increasing the baseline
coverage from 1072 to 1244.

Removing action predicates always increases the coverage by at least
70 tasks. However, merging rules can affect how ties in the achiever
choice function are broken which affects the performance. The benefit
of merged rules is thus not a clear dominance, and we saw a few IPC
domains where coverage decreased (e.g., pipesworld-split, trucks). The
variable renaming transformation is mainly useful in conjunction with
other transformations as they create more rules that become identical
with canonical variable names.

In the rest of this chapter, our experiments use the following trans-
formations: we start by merging action applicability and action effect
rules. We then use the rule decomposition by Helmert. In all resulting
rules, we rename the variables to canonical names to maximize the
number of predicate symbols the algorithm can collapse. We finally
collapse auxiliary predicates introduced by the rule decomposition
transformation where possible.

Admissible Datalog-Based Heuristics

To evaluate the performance of our only admissible heuristic, hmax,
we compare a lifted implementation of A∗ search with hmax with the
breadth-first search (BFS) implemented in Chapter 3. To guarantee
that the BFS returns an optimal solution, we set the cost of all action
schemas to 1.

Table 4.2 shows the number of solved tasks for these two methods
(under the header “Lifted”). We can see that A∗ with hmax performs
worse than BFS, solving 12 tasks less in total. Despite the better cover-
age in the HTG set (+25 tasks solved), the improvements are local to
some domains. The only two domains where A∗ with hmax has strictly
better coverage are rovers-large and visitall-multidimensional. In the
organic-synthesis domain, both methods have the same coverage, but
they differ in which tasks are solved. The bad performance of A∗ hap-
pens because the computation of hmax is expensive, but the heuristic
does not add much more information to the search. Therefore, A∗

with hmax has the computational overhead to calculate the heuristic,
but does not save enough state expansions in return. This is illustrated
in Figure 4.1, which shows the number of expansions per second for
each method. (We only consider tasks that took more than 1 second to
be solved.) In all instances solved by both methods, BFS expands at
least 10 times more states per second than A∗ with hmax. This indicates
that indeed, using hmax is expensive but uninformed, and the planner
is better off using a simple blind search.

68 lifted delete-relaxation heuristics

Lifted Ground

Coverage BFS hmax BFS hmax

IPC Sum (1001) 262 225 340 337

blocksworld-large (40) 0 0 1 1

childsnacks-large (144) 4 1 9 6

genome-edit-distance (312) 44 44 48 48

logistics-large (40) 5 5 9 5

organic-synthesis (56) 44 44 21 20

pipesworld-tankage (50) 12 8 16 10

rovers-large (40) 0 1 3 5

visitall-multidim. (180) 38 69 72 72

HTG Sum (862) 147 172 179 167

Total Sum (1863) 409 397 519 504

Table 4.2: Coverage of breadth-first search (BFS) and A∗ with hmax using and
the lifted (using Powerlifted) and ground (using Fast Downward)
representations.

A similar behavior occurs when comparing the ground BFS and the
ground A∗ with hmax from Fast Downward (Table 4.2). Here, BFS is
not only superior to A∗ in the IPC set (+8 tasks solved), but also in the
HTG set (+12). This shows that even with a much faster computation
of hmax, the heuristic does not help the search. Comparing the lifted
A∗ with hmax and its ground counterpart, the lifted version is superior
only in the organic-synthesis domain. As explained in the previous
chapter, grounding this domain is challenging and the optimal plans
are rather short (less than 20 actions). So it pays off to use the lifted
heuristic, as the search needed to find the plan is not so extensive. We
also see that the gap between Powerlifted and Fast Downward in the
visitall-multidimensional domain is much smaller than in the previous
chapter. This happens because Fast Downward’s grounder can only
ground 72 tasks, so both BFS and A∗ with hmax have this upper limit
in Fast Downward.

Non-Admissible Datalog-Based Heuristics

Our next experiment compares the performance of different non-
admissible Datalog-based heuristics: hadd, hR-FF, and hFF. Table 4.3
show the coverage for these heuristics. We focus on the HTG set. With
both Eager and Lazy + PO GBFS, coverage improves when switching
from hadd to hFF, but we see a larger improvement switching from
Eager (which does not use preferred operators) to Lazy + PO. This
confirms similar results in ground planning (Richter and Helmert,

4.7 experimental results 69

10−3 10−1 101 10310−3

10−1

101

103

uns.

uns.

BFS (lower for 0 tasks)

hm
ax

(l
ow

er
fo

r
45

ta
sk

s)

blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 4.1: Expansions per second on the HTG set for lifted BFS and lifted
A∗ with hmax.

Eager Lazy + PO

Coverage hadd hFF hR-FF hadd hFF hR-FF

IPC Sum (1001) 629 702 677 759 820 816

blocksworld-large (40) 1 4 0 6 9 4

childsnacks-large (144) 34 27 30 82 73 69

genome-edit-distance (312) 185 294 225 289 311 310

logistics-large (40) 8 9 9 40 40 40

organic-synthesis (56) 47 48 48 49 48 49

pipesworld-tankage (50) 22 23 25 28 32 32

rovers-large (40) 11 36 36 40 40 40

visitall-multidim. (180) 118 101 104 143 143 143

HTG Sum (862) 426 542 477 677 696 687

Total Sum (1863) 1055 1244 1154 1436 1516 1503

Table 4.3: Coverage of all configurations using non-admissible Datalog-based
heuristics.

2009) showing that while hFF is generally an improvement over hadd,
using preferred operators impacts the search performance more. As
with ground planning, the results for different domains vary and hadd

sometimes gives better guidance than hFF (e.g., hadd solves more tasks
in childsnacks-large with both Eager and Lazy + PO configurations).
As hadd is more greedy than the other methods, this is expected in
tasks where greedy behavior leads to a plan more quickly.

With Eager GBFS, the lifted hFF has an edge over the simpler rule-
based FF heuristic hR-FF, although hR-FF has superior coverage in a few
domains (e.g., pipesworld-tankage, childsnacks-large). However, using

70 lifted delete-relaxation heuristics

10−1 100 101 102 103
600

800

1,000

1,200

1,400

1,600

Total time in seconds

C
ov

er
ag

e

Lazy + hFF

Lazy + hR-FF

Eager + hgc, ur-d

Lazy + hFF (FD)

Figure 4.2: Solved tasks over time for different methods.

the Lazy + PO GBFS, hFF and hR-FF have a similar performance: hFF

solves only 13 instances more than hR-FF in both sets, and only 9 more
in the HTG set. In the HTG set, hR-FF solves more tasks than hFF only
in the organic-synthesis domain. In 4 domains of the IPC set, hR-FF

has higher coverage than hFF. But hFFsolves more tasks in 7 domains
of this set and with larger differences in coverage (e.g., +11 tasks in
openstacks).

Compared to hadd the overestimation done by hR-FF is limited by the
maximal number of effects in an action. We hypothesized that usually
not all effects of an action are required and thus the overestimation
would be low. To test this, we measured the number of useful atoms
per action in the relaxed plan found by hR-FF in the initial state. If
this proportion p is 1 then hR-FF is equal to hFF for this state. With
higher values, the overestimation is larger. Among the 1863 tasks,
87.3% (1627) have p ≤ 5, while only 10.5% (196) have p ≤ 2. This
shows that while the overestimation of hR-FF is still low, it is not as
low as we initially expected. This overestimation does not necessarily
influence the heuristic quality as scaling all heuristic values with the
same factor has no effect in our search algorithms.

Other Lifted Planners

We also investigated how our methods compare to the other lifted
heuristics in the literature that do not use Datalog. We ran experiments
using hgc (Chapter 3), and with the hgc, ur-d heuristic (Lauer et al., 2021)
that break ties in hgc based on the unary relaxation of the delete-
relaxed task. Because of this further relaxation, it is currently not
possible to extract a relaxed plan or preferred operators from these
estimates. We thus use these heuristics with Eager search. Table 4.4
shows the results.

4.7 experimental results 71

Lifted Methods Fast Downward

Lazy Eager Eager Lazy

Coverage hFF hgc hgc, ur-d hFF hFF

IPC Sum (1001) 820 597 575 775 862

blocksworld-large (40) 9 4 7 4 12

childsnacks-large (144) 73 26 98 51 115

genome-edit-distance (312) 311 312 312 312 312

logistics-large (40) 40 20 0 30 32

organic-synthesis (56) 48 48 47 20 20

pipesworld-tankage (50) 32 22 10 15 19

rovers-large (40) 40 1 16 11 13

visitall-multidim. (180) 143 65 151 72 72

HTG Sum (862) 696 498 641 515 595

Total Sum (1863) 1516 1095 1216 1290 1457

Table 4.4: Coverage of our best method (Lazy + PO with hFF), other lifted
methods, and Fast Downward configurations. We write only “Lazy”
for Lazy + PO configurations.

When comparing to our configurations using Eager search, hFF is
competitive with the methods based on hgc. In total hFF solves 28
tasks more than hgc, ur-d. The advantage is mainly in the IPC domains
where hFF solves 127 tasks more than hgc, ur-d. On the HTG domains,
the picture is reversed and hFF solves 99 tasks less than hgc, ur-d(cf.
Table 4.3).

However, all our methods using Lazy + PO are superior in cov-
erage. All the Datalog-based heuristics are still better on the IPC set
but also solve more tasks on the HTG set. As mentioned above, the
preferred operators have more impact than a better heuristic and it is
not known how to find preferred operators over the unary relaxation
task efficiently.

We analyzed coverage over time for hFF, hR-FF, and hgc, ur-d in Figure
4.2. The search using hgc, ur-d has much higher coverage in approxi-
mately the first 10 seconds because it is fast to compute. Hence, tasks
that do not require a deep search are solved quickly. In fact, the lifted
hFF and hR-FF computation are worst-case exponential in the PDDL-
size, while hgc, ur-d is polynomial (Lauer et al., 2021). Indeed, for small
tasks the overhead of computing hFF or hR-FF does not pay off. For
larger tasks, the stronger heuristic guidance is worth spending more
time to compute hFF and hR-FF.

When analyzing memory, our methods are superior to hgc, ur-d even
with small limits. Figure 4.3 compares coverage for different memory

72 lifted delete-relaxation heuristics

104 105 106 107
0

200

400

600

800

1,000

1,200

1,400

1,600

Memory in kB

So
lv

ed
ta

sk
s

Lazy + hFF

Lazy + hR-FF

Eager + hgc, ur-d

Lazy + hFF (FD)

Figure 4.3: Solved tasks per second for different memory limits.

limits. Using a limit as low as 100 MiB, the difference in coverage
between our methods and hgc, ur-d is already larger than 150 tasks.

Ground Planners

Our last experiment compares Powerlifted with the lifted hFF heuristic
to Fast Downward (Helmert, 2006) with the ground hFF heuristic. Both
use a generalized Dijkstra algorithm for their heuristic computation
but the lifted implementation requires a more expensive unification
step with this algorithm. Additionally, the two planners break ties
in the heuristic computation differently, so they are not guaranteed
to expand the same set of states. We thus treat this experiment as
comparing two planners rather than comparing two implementations
of hFF. Table 4.4 shows the results for coverage.

Using Eager, Fast Downward outperforms Powerlifted in general.
In the IPC set, it solves 73 more tasks in total. In 9 domains, Fast
Downward solved 5 or more tasks more than Powerlifted. The largest
difference was in barman, where Fast Downward solved 11 tasks more.
The only domains where Powerlifted solves more tasks are visitall,
parking-sat14, and thoughtful. This difference in performance is ex-
pected since the IPC tasks are easy to ground and the main challenge
is the search itself. In such cases the advantage of not having to ground
the task does not offset the more expensive heuristic computation in
Powerlifted. When comparing the results in the HTG set, the planners
are on par. Nonetheless, the coverage in some domains differs a lot,
such as in logistics-large and organic-synthesis.

With Lazy + PO, the trend is similar: Fast Downward is superior
on the IPC set, while Powerlifted is superior on the HTG set. However,
on the IPC set, the advantage of Fast Downward reduces from 73 to
42 tasks. On the HTG set, the advantage of Powerlifted increases from

4.8 summary 73

27 to 101 tasks. In total, Powerlifted has the highest coverage in this
setting.

As Figure 4.2 shows, Fast Downward solves more tasks than the
lifted methods in the first seconds. As most of the tasks in the com-
bined benchmark are easy to ground and the ground heuristic com-
putation is much faster, Fast Downward solves even more tasks than
hgc, ur-d straight away. In fact, Powerlifted with hFF only passes Fast
Downward in number of solved tasks after around 400 seconds.

Comparing memory, Fast Downward has a similar performance to
our methods. We can see in Figure 4.3 that with limits smaller than 1
GiB, Fast Downward has the highest coverage. For larger limits, the
lifted planner is slightly superior.

4.8 summary

In this chapter, we showed how to compute different delete-relaxation
directly from a lifted representation of a planning task. We showed
how to compute three well-known heuristics: hmax, hadd, and hFF.
Moreover, we introduced the new rule-based FF heuristic, hR-FF, which
treats the effects of an action independently and can thus overestimate
hFF and hadd.

Therefore, we introduced annotated Datalog programs, which as-
sociate every rule and fact with a sequence of instructions, called an
annotation. After evaluating a Datalog query, the actions belonging
to a relaxed plan can be extracted by executing the annotations along
its derivation. We showed how such annotated Datalog programs
can be simplified without changing their semantics. This allows us to
compute the delete-relaxation heuristic from smaller annotated Data-
log programs which are consequently faster to evaluate. We believe
annotated Datalog programs can be used beyond the definition of
heuristics, such as for generating landmarks (Zhu and Givan, 2003),
as they allow us to express other computations over the relaxed task.

Empirically, in the non-admissible setting, our lifted planner Power-
lifted using a GBFS with the lifted hFF heuristic is competitive with its
ground counterparts. The performance of Powerlifted is also improved
when we include other search techniques, such as deferred evaluation
and preferred operators (Helmert, 2006; Richter and Helmert, 2009).
In domains that are hard to ground, this configuration solves more
tasks than any other lifted method. In IPC domains, which are not
particularly hard to ground, it reduces the gap to Fast Downward.
Unfortunately, the same improvement does not occur in the admissible
setting, where we are only interested in optimal solutions. There, A∗

search with the lifted hmax heuristic adds a significant overhead to the
planner, while not adding much information to the search. This leads
to a decrease in the number of solved tasks.

74 lifted delete-relaxation heuristics

In the next chapter, we study other techniques that will help Pow-
erlifted to solve even more tasks. These techniques will combine
delete-relaxation heuristics with more recent search algorithms, such
as best-first width search (Lipovetzky and Geffner, 2017).

chapter notes and history

Our work is not the first one to compute delete-relaxed heuristics in
a lifted level. Related work on this problem can be split into three
categories: planners computing an explicit relaxed planning graph
(Blum and Furst, 1997), logic programming (McDermott, 1999), and
homomorphisms (Horčík and Fišer, 2021).

In the first category, Ridder and Fox (2014) introduced the con-
cept of lifted relaxed planning graphs (RPGs). To avoid the compu-
tational blow up when computing lifted RPGs, Ridder and Fox use
almost-equivalence relationships between objects. Two objects are said
almost-equivalent if they can instantiate the same parameters in the
same predicates of the task. Although this speeds up the heuristic
computation, it also decreases the heuristic quality. In fact, the planner
implemented by Ridder and Fox performs consistently worse than
more modern lifted planners, as demonstrated in the previous chapter
(see Chapter 3).

Lauer et al. (2021) introduced the k-ary relaxation. In the k-ary
relaxation of an atom p(V1, . . . , Vn), the atom is projected on (n

k) new
atoms, containing all combinations of V1, . . . , Vn with k variables. A
particular case is the unary relaxation (discussed above), where an
n-ary atom is projected on n new unary atoms. The same relaxation is
done for action schemas and states. The relaxation is also applied to
the variables of the action. For a given state s, the planner computes a
plan from the unary relaxation of s. The length of this relaxed plan is
used as a heuristic estimate for the original state.

Computing a plan in the unary relaxed task can still take exponen-
tial time. However, it becomes tractable when we consider its delete
relaxation. Lauer et al. (2021) proved that, for a delete-free unary
relaxed task, we can compute a plan in polynomial time in its size.
On the flip side, the heuristic is not much more informative than
the goal-count heuristic. But while it does not help much as a single
heuristic function, this unary-relaxation heuristic improves the search
when used as tie-breaker.

Lauer et al. (2021) also show that while computing the k-ary re-
laxation for k > 1 is challenging, we can use a k-ary relaxation for a
handful of atoms, and use unary relaxation for the remaining ones.
The observation is that some atoms help the heuristic much more than
others. For these “relevant” atoms, we want to keep their informa-
tion intact. In our experiments, we compared our implementations to

4.8 summary 75

hgc, ur-d, which does not relaxed static atoms — those not affected by
any action schema effect.

In the second category, McDermott (1996) introduced a planner
using backward-chaining to count how many actions are needed to
reach each goal atom of the task individually. This backward-chaining
is done in a Prolog-like inference method. However, this method is
not complete (McDermott, 1996).

The ideas from this chapter were introduced in two different papers
(Corrêa et al., 2021, 2022). In the earlier paper, we showed how to
compute the hadd heuristic and how to extract preferred operators
using the back-chaining method. For this purpose, no annotations
are needed, and we can simply assign a weight to each Datalog rule.
In the second paper, we introduced the idea of annotated Datalog
and also the rule-based FF heuristic, hFF. Both works mention how to
compute hmax, but none of them presents experimental results for A∗

with hmax. We implemented A∗ and hmax later to help the empirical
comparison done by Horčík and Fišer (2021).

Datalog-based heuristics compute a lifted heuristic that is identical
to its ground counterpart. A different approach is to use homomor-
phisms (Horčík and Fišer, 2021; Horčík et al., 2022). In this context,
we are interested in homomorphisms between constants, so a homo-
morphism is a self-map m : C 7→ C. The planner first computes a
homomorphism between constants of the task. This homomorphism is
used to reduce the number of objects. Then, the algorithm grounds the
smaller task, and uses it to extract a heuristic estimate – computing
the heuristic over the ground representation. For delete-free tasks,
(optimal) plans are preserved (Horčík et al., 2022), which implies that
admissible heuristics in the smaller ground task are also admissible in
the original one. The almost-equivalence relation by Ridder and Fox
(2014) can also be seen as a form of homomorphism.

Homomorphisms in lifted planning are similar to domain-abstractions
in non-ground answer set programs (Saribatur et al., 2021). Both
aim at reducing the set of constants by using self-maps, while over-
approximating the set of solutions to their problems. It is still open
how to translate the methods from answer set programming (e.g.,
domain-abstractions via CEGAR) to lifted planning.

5
L I F T E D W I D T H S E A R C H

In the previous chapters we studied how to construct an efficient lifted
heuristic search planner. So far, we have implemented textbook search
algorithms, such as GBFS and A∗, and standard classical planning
heuristics, such as hFF and hmax.

In this chapter, we show how to implement a different search algo-
rithm: best-first width search (BFWS) (Lipovetzky and Geffner, 2017).
Width search evaluates states based on their novelty (Lipovetzky and
Geffner, 2012): the size of the smallest set of atoms that has not oc-
curred in any previously evaluated state. The search then prioritizes
states with smaller novelty values. In practice, planners bound the size
of the set they check by some constant k, and if the evaluated state
does not have a novel set of size k or less, the state has novelty k + 1.
Almost all planners in the literature limit k to 2 (e.g., Lipovetzky and
Geffner, 2012).

Usually, it is very fast to evaluate the novelty of state. As a result,
width search planners have been successful in recent IPCs satisficing
and agile tracks (Corrêa et al., 2023c; Francès et al., 2018). Furthermore,
these methods also excel in simulation settings, where the planner does
not have access to an action model of the task (Francès et al., 2017).
This is similar to the setting of lifted planning, where obtaining the
ground actions can be expensive. This correspondence is a motivator
for our study, since it suggests that there might be a synergy between
lifted planning and width-based search.

The work in this chapter is mainly an engineering effort. While
the concepts of novelty and width-search are easy to translate to the
lifted setting, their commonly used data structures do not scale. In the
ground setting — where all reachable atoms are known in advance
—, the planner needs simple data structures (e.g., bitsets) to keep
track of novel atoms. In contrast, implementing best-first width search
algorithms in a lifted planner requires keeping track of the reachable
atoms as they are discovered. By making this tracking efficient, we
obtain a lifted planner that achieves state-of-the-art performance for
our HTG set. Perhaps surprisingly, our lifted BFWS is superior to its
ground counterpart for the IPC set.

Moreover, we also introduce a new method for combining BFWS
with other heuristics using greedy best-first search with multiple open

77

78 lifted width search

list queues (Röger and Helmert, 2010). This adds an exploitative aspect
to the exploration-focused BFWS, leading to higher coverage in some
domains.

5.1 best-first width search

Best-first width search (Lipovetzky and Geffner, 2017) is a search algo-best-first width
search rithm that uses novelty measures (Lipovetzky and Geffner, 2012) to

novelty select which states to expand next. The novelty w(s) of a state s is the
size of the smallest non-empty set of ground atoms Q such that s is
the first state visited by the search where Q ⊆ s.

Example 5.1 Assume that we have evaluated the following three states:

s1 = {q, r},
s2 = {r, t},
s3 = {t, v}.

The atoms seen already are {q, r, t, v}. Then, the state

s4 = {q, p}

has novelty w(s4) = 1, because the smallest (non-empty) set of atoms in s4

containing only atoms not seen yet is {p}, which has size 1.
If we compute the novelty of the state

s5 = {r, t, v}

then w(s5) = 2, because the atoms r and v have not occurred together in
any previously visited state, and all individual atoms have already been seen.

The simplest BFWS variant prioritizes in the open list those states
with minimal w-value. However, the strongest BFWS planners apply
novelty measures based on partition functions of the search spacepartition functions

(Francès et al., 2018, 2017; Lipovetzky and Geffner, 2017). The novelty
w⟨ f1,..., fn⟩(s) of a state s given functions ⟨ f1, . . . , fn⟩ is the size of the
smallest set of atoms Q such that s is the first state visited where
Q ⊆ s among all states S where fi(s) = fi(s′) for 1 ≤ i ≤ n and for all
s′ ∈ S.

Example 5.2 Assume that h is some arbitrary heuristic function, and let
w⟨h⟩ be the novelty computed over the h-partition. Say also that we have two
states:

s1 = {q, r},
s2 = {r, t},

and h(s1) = 10, h(s2) = 15. The state

s3 = {q, t}

5.2 balancing exploration and exploitation 79

with h(s3) = 10 has w⟨h⟩(s3) = 1, because the set {t} never occurred in a
previously visited state that has the same h-value as s3. This subset did occur
in s2, but h(s2) ̸= h(s3).

In practice, planners only evaluate novelty up to a bound k, where
usually k = 2. If a state s has no novel set of size k or less, then
w(s) = k + 1.

An advantage of width search algorithms is that, a priori, the evalu-
ation of w in a given state only depends on the state itself and the set
of previously visited states. In other words, the evaluation of a state is
black-box with respect to the structure of the problem (Francès et al.,
2017). This makes width search an attractive option for hard-to-ground
tasks, where it is expensive to obtain ground actions.

The main black-box BFWS algorithms use w⟨#r,#g⟩(s) where the
partition functions ⟨#r, #g⟩ define #r(s) as the number of relevant atoms
that are true in s, and #g(s) as the number of goal atoms in G that
are true in s. Choosing the set of relevant atoms is a parameter of the
search. There are different approaches for this choice point. Next, we
focus on the following two methods from the literature (Francès et al.,
2017):

(i) BFWS(R0), where the set of relevant atoms is the empty set; and

(ii) BFWS(RX), where the set of relevant atoms is the set of useful
atoms (Chapter 4) computed from a relaxed plan from s0.1

We study BFWS(R0) because it is the baseline version of width-based
search with simulators and it does not require any knowledge about
the action structures. The choice of BFWS(RX) comes from Chapter 4,
where we show how to extract a relaxed plan efficiently from the lifted
representation.2

5.2 balancing exploration and exploitation

One important design choice of a planner is how it balances exploration exploration

and exploitation. Exploration focuses on parts of the state space that are exploitation
distinct from previously visited ones; exploitation favors more promis-
ing parts of the state space. For example, choosing the next expanded
state at random is a form of exploration, while choosing it based on
a heuristic is exploitation. Modern planners aim at finding a good
balance between both. In Chapter 4, we introduced two techniques for
that: preferred operators and alternation of open lists.

Width search was originally introduced as a method to find a good
exploration-exploitation balance (Lipovetzky and Geffner, 2017). But

1 Recall that an atom is useful for a state s if it appears in the precondition of an action
of a relaxed plan from s.

2 We do not consider the other methods from Francès et al. (2017) in the lifted setting
because they violate our assumption that we do not know all reachable atoms in
advance (which is prohibitive due to the expensive grounding)

80 lifted width search

in some tasks, using only the novelty value of states can be misleading,
since it only focuses on exploring unseen parts of the state space,
without exploiting any information about the structure of the problem.
We propose some ways to mitigate this issue next.

Dual-Queue BFWS

In Chapter 4, we showed that using a second open list (i.e., queue) in
greedy best-first search helps to increase coverage. This second open
list contains only atoms that were reached via preferred operators,
while the first queue contains all atoms.

We extend this approach to BFWS. By definition, however, preferred
operators are state-dependent. Thus, we need to extract a relaxed plan
and the useful atoms for each state, which is equivalent to evaluating
hadd (Bonet and Geffner, 2001) in every state. To avoid this overhead,
we compute a relaxed plan only for the initial state I and consider
the useful atoms of I as useful for every state in the search. This is a
relaxation on the definition of useful atoms, but one of our hypotheses
is it that this can still speed up the search.

From this relaxation of preferred operators, we build a dual-queue
BFWS (DQ-BFWS). Assume that the set of relevant atoms of our search
is R, the dual-queue BFWS, called DQ-BFWS(R) for short, works asDQ-BFWS(R)

follows. In the first queue Q1, we insert all generated states. In the
second queue Q2, we insert only states reached via preferred operators.
Both queues are ordered by w⟨#r,#g⟩, using R as the set of relevant
atoms. We also use a boosting mechanism, as in Chapter 4. However,
our boosting is slightly different: we associate a priority value pi ∈ Z

with each queue Qi and let the search pick the queue with largest
associated priority. The value of p1 and p2 are set to 0 initially. We
reduce pi by 1 every time we select a state from qi, and we boost it by
C ∈N (p := p+C) whenever we expand a state s from it that contains
more goal atoms than all states seen before s. The key difference to
the boosting in Chapter 4 is that now we boost the queue based on
the number of achieved goal atoms, instead of a heuristic value h.

Adding More Heuristics to BFWS

Another approach for adding goal-direction to a BFWS search is to
alternate between open lists sorted by novelty measures and open lists
sorted by heuristics. Katz et al. (2017) show that alternating between
open lists (Röger and Helmert, 2010) using only heuristics based on
novelty evaluators can be beneficial. In our work, we run BFWS and
alternate between an open list ordered by w⟨#r,#g⟩ and an open list
ordered by hadd or hFF.3 This goes in the opposite direction compared

3 We introduce the algorithm in terms of hadd but it is analogous for hFF.

5.3 implementation 81

to DQ-BFWS: we have the overhead of computing hadd for every state,
but by alternating with a novelty-based queue, we might achieve a
better balance between exploration and exploitation and reduce the
number of evaluated states. Our hypothesis for this approach is that
the extra effort used to compute hadd will pay off by avoiding some
expansions during search.

Since we always evaluate hadd, we can also extract useful atoms
and preferred operators for every state without further overhead. We
denote this version as BFWS([R, h]), where R is the set of relevant BFWS([R, h])

atoms and h is a heuristic function. For both evaluators R and hadd,
BFWS([R, hadd]) also uses an open list variant that only contains states
reached via preferred operators. Thus, BFWS([R, hadd]) has four open
lists in total. It alternates between the open lists of R and hadd each
time it selects a new state to be expanded. For a given evaluator, the
search then decides between the regular open list or the open list with
only states reached via preferred operators based on the counter C, as
explained above.

5.3 implementation

Any implementation of a width search needs to keep track of the set
of reached atoms. For k = 1, the straightforward implementation is to
keep a bitmap where each position corresponds to a ground atom P,
and the corresponding bit is set to 1 if P has been reached. To compute
the novelty of a state s, we simply check if all atoms in the state have
their corresponding bit set to 1. If not, then w(s) = 1 and we update
the bitmap accordingly.

To generalize the computation for larger k, we can create a bitmap
of size (n

k), where n is the total number of ground atoms, and each
entry corresponds to a set of ground atoms of size k. The entry for set
Q is set to 1 iff Q has been achieved. The evaluation and the update of
the bitmap is analogous to the k = 1 case. For w⟨#r,#g⟩, the same idea
still applies. The difference is that we need to create one bitmap for
each (#r, #g) pair.

Unfortunately, for hard-to-ground planning tasks, such an approach
is usually infeasible because it requires computing all reachable atoms
in advance, which is often too expensive. Even when this computation
is feasible, the number of atoms is often too large and so creating
bitmaps for all sets of size k adds too much overhead.

To avoid grounding, we propose an alternative implementation
based on the state representation of Chapter 3. Remember that a state
in the lifted representation is a set of relations. For each relation, we
associate each tuple with an index, similarly as for the bitmap. This
indexing is done on demand and an atom is indexed only once it is
reached. We store a hash table that maps each reached atom to an
index. To check if an atom p has been seen and indexed before, it

82 lifted width search

suffices to check if there is an entry in the hash table with key p. If
not, we add the entry for p mapping it to a fresh index value.4

For k = 1, we evaluate w(s) by checking if each atom in s has an
entry in the hash table just described. For larger values of k, we keep
track of the reached sets Q by storing a tuple with the indices of the
atoms in Q in a set. In detail, to check if a tuple Q is reached for the
first time, we first obtain the tuple Q′ of all indices of atoms in Q.
Then, we check if Q′ is in the set and if not, we know that the state is
novel and add Q′ to the set.

Both the bitmap used in the ground version and the data structures
used in our implementation (i.e., the hash table used for indexation,
and the set of tuples of indices) have an amortized access time of O(1).
Since our data structures have far more overhead compared to the
bitmap approach, it is important to use an efficient implementation.
In our case, we tested different well-known C++ implementations
of hash sets/tables: the built-in implementation from the standard
library; the implementation from Abseil;5 and the Parallel Hashmap
library.6 Abseil and Parallel Hashmap reimplement traditional data
structures in C++, but they focus on performance. Parallel Hashmap is
built on top of Abseil, but it removes some non-determinism present
in the original implementation.

We also use a common optimization for width-based planners
(Francès et al., 2017): if applying action A in state s yields state s′,
where #r(s) = #r(s′) and #g(s) = #g(s′), then we only consider sets
that contain an atom in add(A) to evaluate w⟨#r,#g⟩(s′).

5.4 experiments

We implemented the following width search algorithms in Powerlifted:

• BFWS(R0);

• BFWS(RX);

• DQ-BFWS(RX);

• BFWS([RX, h]), where h is a heuristic function given as parameter.
We study specifically [RX, hadd] and [RX, hFF].

We use C = 1000 for all our two configurations using boosting, DQ-
BFWS(RX) and BFWS([RX, h]). We also tested all our configuration
using k = 1 and k = 2.

4 This implementation is well-suited also for simulations where we do not know all
reachable atoms in advance, or for problems where the set of constants (and hence
atoms) can change during the plan (Chapter 7).

5 Available at: https://abseil.io/ (Accessed on June 27th, 2024)
6 Available at: https://github.com/greg7mdp/parallel-hashmap (Accessed on June

27th, 2024)

https://abseil.io/
https://github.com/greg7mdp/parallel-hashmap

5.4 experiments 83

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

Parallel Hashmap (lower for 359 tasks)

ST
L

(l
ow

er
fo

r
1
0

ta
sk

s)

blocksworld-large-simple
childsnacks-large
genome-edit-distance
logistics-large-simple
organic-synthesis
pipesworld-tankage-nosplit
rovers-large-simple
visitall-multidimensional

Figure 5.1: Search time for BFWS(R0) using different implementations for
the data structures storing previously seen tuples.

Efficient Hash Tables

For our first experiment, we tested different versions of BFWS(R0),
using different implementations of hash tables. Figure 5.1 shows the
search time for the versions using the standard template library (STL)
and Parallel Hashmap. Parallel Hashmap is consistently faster, and
it even solves 57 instances that the STL version does not. Except for
some simple tasks, Parallel Hashmap always produced better results.
The Parallel Hashmap and the Abseil implementation performed
similarly, but Parallel Hashmap has the benefit of being deterministic.
With respect to memory, there is no visible difference between the
implementations, as the memory usage is usually dominated by the
large number of atoms that the hash tables contain. Therefore, we use
the Parallel Hashmap implementation in our experiments.

Comparing Different Lifted Width-Search Algorithms

We also compare all lifted width search algorithms implemented
in Powerlifted. Table 5.1 shows the results.7 For each configuration,
we tested one version using k = 1 and one using k = 2. The two
best methods are BFWS([RX, hadd]) and BFWS([RX, hFF]), both with
k = 1. This indicates that the open list alternation provides a bet-
ter exploration-exploitation balance than the other approaches. In-
deed, we see that all three planners using multiple open lists yield
a strong performance. DQ-BFWS(RX) solves roughly as many tasks

7 We split the visitall-multidimensional domain into two because the FS-blind planner,
that we later compare to, does not support some tasks in this domain.

84 lifted width search

R0 RX DQ(RX) [RX, hadd] [RX, hFF]

value of k 1 2 1 2 1 2 1 2 1 2

IPC Sum (1001) 623 725 680 741 676 736 838 821 857 852

blocksworld-large (40) 7 6 7 5 8 3 21 12 19 11

childsnacks-large (144) 26 60 39 67 40 65 100 100 101 102

genome-edit-dist. (312) 306 307 312 312 312 312 309 310 309 311

logistics-large (40) 10 10 32 31 31 31 40 40 40 40

organic-synthesis (56) 49 48 39 49 49 49 50 49 50 49

pipesworld-tankage (50) 31 43 44 47 44 47 48 44 47 47

rovers-large (40) 0 0 3 1 2 1 40 23 40 28

visitall-3-and-4-dim. (120) 114 108 114 111 116 116 101 103 101 101

visitall-5-dim (60) 50 48 51 48 51 51 42 42 41 42

HTG Sum (862) 593 630 651 671 653 675 751 723 748 731

Total Sum (1863) 1216 1355 1331 1412 1329 1411 1589 1544 1605 1583

Table 5.1: Number of solved tasks by different lifted BFWS configurations
and different values of k on the IPC (summarized) and HTG sets.

as BFWS(RX), its single-queue counterpart, while BFWS([RX, hadd])
and BFWS([RX, hFF]) solve roughly the same number of tasks across
all domains. The two planners obtain a much higher total coverage
than all other planners (751 and 748 tasks with k = 1), showing that
it is indeed beneficial to make DQ-BFWS(RX) more goal directed
by combining it with hadd or hFF. We also see that DQ-BFWS(RX) is
complementary to BFWS([RX, hadd]): they obtain the highest coverage
among all evaluated planners in two and six domains, respectively. In
the two domains where DQ-BFWS(RX) performs best (genome-edit-
distance and visitall-multidimensional), hadd and hFF seem to increase
the computational effort without giving enough guidance in return —
we observed a similar behavior in these two domains in Chapter 4.

To estimate the impact of the open list alternation in BFWS([RX, hadd])
and BFWS([RX, hFF]), we compared the number of expansions of
these methods and BFWS(RX). As RX is one of the open lists in
BFWS([RX, h]), this gives us an intuition of how much the other open
lists affect the search. Figure 5.2 shows the number of expanded states
for BFWS(Rx) and [RX, hadd] in the HTG set. In tasks solved by both,
BFWS([RX, hadd]) usually expands fewer states than BFWS(RX). This
shows us that while computing hadd in every state can be potentially
expensive, the information extracted from it (heuristic value, preferred
operators) does add a lot of information to the search, leading to
both a reduction in the number of expanded states and an increase in
coverage.

Table 5.1 also shows that increasing the value of k has less impact
than switching the search algorithm. Most configurations benefit from
a higher value of k, but this is not the case for BFWS([RX, hadd]) and
BFWS([RX, hFF]), which evaluate a heuristic function at every state.
In these two configurations, using k = 2 consumes too much time,

5.4 experiments 85

Ground Lifted

R0 R0 RX DQ(RX) [RX, hadd] [RX, hFF]

IPC Sum (1001) 714 725 741 736 838 857

blocksworld-large (40) 0 6 5 3 21 19

childsnacks-large (144) 73 60 67 65 100 101

genome-edit-dist. (312) 312 307 312 312 309 309

logistics-large (40) 0 10 31 31 40 40

organic-synthesis (56) 0 48 49 49 50 50

pipesworld-tankage (50) 18 43 47 47 48 47

rovers-large (40) 2 0 1 1 40 40

visitall-3-and-4-dim. (120) 37 108 111 116 101 101

visitall-5-dim (60) – 48 48 51 42 41

HTG Sum (862) 442 630 671 675 751 748

Total Sum (1863) 1156 1355 1412 1411 1589 1605

Table 5.2: Number of solved tasks by different planners using BFWS on
the IPC (summarized) and HTG benchmark sets. For the ground
version of R0, we use the implementation from the FS-blind planner.
As FS-blind does not support predicates with arity higher than 4,
we split the visitall-multidimensional domain into two rows. Lifted
implementations use their best corresponding value for k (see text).

but since the planner already spends time computing hadd or hFF, this
extra effort reduces the coverage. Using k = 1, on the other hand,
seems to add enough exploration to the search while not being too
expensive.

In the following experiments, we use the respective best value for
k for each configuration. For BFWS(R0), BFWS(RX), and DQ(RX) we
use k = 2, while BFWS([RX, hadd]) and BFWS([RX, hFF]) use k = 1.

Comparison to the Ground Implementation

Next we compare our lifted BFWS(R0) implementation to the corre-
sponding ground implementation. For the ground version, we use the
FS-blind planner, which participated in the IPC 2018 (Francès et al.,
2018, 2017). In both cases, we use k = 2. For the IPC set, the lifted
implementation is on par with the ground version: the lifted version
solves 725 tasks, while the ground version solves 714 tasks. We find
these results remarkable, since our implementation is tailored for large
tasks, and we expected the bitmap representation to be superior for
the smaller problems. For the HTG set, the lifted version is preferable,
solving more tasks than the ground version in 5 of the 8 commonly

86 lifted width search

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

BFWS(RX) (lower for 107 tasks)

[R
x,

had
d
]

(l
ow

er
fo

r
5
0
6

ta
sk

s) blocksworld-large-simple
childsnacks-large
genome-edit-distance
logistics-large-simple
organic-synthesis
pipesworld-tankage-nosplit
rovers-large-simple
visitall-multidimensional

Figure 5.2: Expanded states for BFWS(RX) and [RX , hadd] on the HTG set.

supported domains (see Table 5.2, which also includes our other lifted
configurations).8

Comparison to Other Methods

We now compare the lifted implementations of the different algorithms
described above to state-of-the-art ground and lifted planners, focusing
on the HTG set.

As baselines for ground planners, we use

• LAMA (Richter and Westphal, 2010), which uses the FF heuristic
and landmarks; 9

• Dual-BFWS (Francès et al., 2018; Lipovetzky and Geffner, 2017),
a state-of-the-art width search planner.

For lifted planners, we compare to three approaches:

• lazy GBFS with preferred operators using hFF (Lazy + PO ver-
sion from Chapter 4), denoted by L-hFF; and

• the goal-count heuristic using the unary relaxation heuristic as
tiebreaker — which is the best method from Lauer et al. (2021)
and also used in Chapter 4 — denoted by L-hgc, ur-d.

Table 5.3 shows overall coverage for these methods. We also include
our two best lifted BFWS methods to help us with the comparison.

8 Since the FS planner does not support predicates with arity higher than 4, it cannot
handle the visitall-5-dim instances.

9 LAMA is an anytime-planner, but we report results only for its first iteration, as the
following searches cannot increase coverage but simply find better plans

5.4 experiments 87

Baselines Lifted BFWS

LAMA Dual-BFWS L-hgc, ur-d L-hFF [RX, hadd] [RX, hFF]

IPC Sum (1001) 917 953 575 821 838 857

blocksworld-large (40) 12 4 7 9 21 19

childsnacks-large (144) 116 109 98 72 100 101

genome-edit-dist. (312) 312 312 312 311 309 309

logistics-large (40) 36 4 0 40 40 40

organic-synthesis (56) 21 20 47 48 50 50

pipesworld-tankage (50) 18 18 10 27 48 47

rovers-large (40) 16 13 16 40 40 40

visitall-3-and-4-dim. (120) 60 36 100 98 101 101

visitall-5-dim (60) 12 6 51 42 42 41

HTG Sum (862) 603 522 641 687 751 748

Total Sum (1863) 1520 1475 1216 1508 1589 1605

Table 5.3: Number of solved tasks by different planners on the IPC (summa-
rized) and HTG benchmark sets.

We first compare our best lifted BFWS, BFWS([RX, hFF]), with L-hFF.
This is similar to our previous comparison between BFWS(RX) and
BFWS([RX, hadd]): BFWS([RX, hadd]) has extra open lists ordered by the
hadd heuristic when compared to BFWS(RX); now when comparing
L-hFFand BFWS([RX, hFF]), the second has an extra open lists ordered
by novelty value. Figure 5.3 compare their run times. In most cases,
BFWS([RX, hFF]) is faster than L-hFF. This shows that despite the extra
work to keep more open lists and evaluate the novelty of every state,
this does translate into better performance. This improvement further
translates into coverage, where our two best lifted BFWS methods are
superior to L-hFF and L-hgc, ur-d in both IPC and HTG sets. Looking
at individual domains, it is interesting to see that in six domains,
BFWS([RX, hFF]) solves at least as many tasks as the stronger of the
two ingredient planners (L-hFF and BFWS(RX)) for that domain.

However, adding exploration might cause the search to behave too
greedily, which can lead to plans that are much longer than neces-
sary. To evaluate if this happens for our lifted BFWS algorithms, we
compared the plans found by L-hFF and BFWS([RX, hFF]) on the HTG
set. Figure 5.4 shows the results. In general, BFWS([RX, hFF]) found
shorter plans than L-hFF. This is unexpected, because the additional
open lists used by BFWS([RX, hFF]) do not account for action costs or
distance estimates.

Compared to state-of-the-art ground planners, BFWS([RX, hadd]) and
BFWS([RX, hFF]) are superior on the HTG set, but LAMA and Dual-
BFWS are still better on the IPC set. Nonetheless, the gap between
our best lifted configuration and LAMA decreased by 36 instances in
the IPC benchmark, when compared to the gap between L-hFF and
LAMA.

88 lifted width search

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

L-hFF (lower for 255 tasks)

[R
X

,h
FF
]

(l
ow

er
fo

r
3
9
6

ta
sk

s) blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 5.3: Run time for L-hFF and BFWS([RX , hadd]) on the HTG set.

100 101 102

100

101

102

uns.

uns.

L-hFF (lower for 145 tasks)

[R
X

,h
FF
]

(l
ow

er
fo

r
2
2
4

ta
sk

s) blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 5.4: Plan length for L-hFF and BFWS([RX , hadd]) on the HTG set.

5.5 summary

In this chapter, we investigated how to implement BFWS in a lifted set-
ting. Common data structures used by ground planners do not scale,
but a re-implementation of BFWS, taking into account the lifted rep-
resentation, reaches state-of-the-art performance. We also presented
ways to make the search more informed by using different evaluators
and preferred operators together with the novelty criteria. In this
manner, we enhanced the exploratory behavior of BFWS with the ex-
ploitative behavior of the hadd and hFF. In our experiments, we showed
that the novelty measures have high synergy with both heuristics,
increasing the number of solved tasks.

5.5 summary 89

Our work is an initial study of BFWS with lifted implementations.
There are other BFWS-based algorithms that can be implemented using
our new representation (e.g., Katz et al., 2017). For more sophisticated
BFWS variants, such as BFWS(f6) (Lipovetzky and Geffner, 2017), one
needs to adapt landmarks to the lifted setting (Wichlacz et al., 2021).

chapter notes and history

Balancing exploration and exploitation is a longstanding challenge in
classical planning (Asai and Fukunaga, 2017; Fickert, 2018; Hoffmann
and Nebel, 2001; Katz et al., 2017; Nakhost and Müller, 2009; Richter
and Westphal, 2008; Vidal, 2011). In recent years, BFWS has emerged
as the most successful approach for this problem (Francès et al., 2017;
Lipovetzky and Geffner, 2012; Lipovetzky and Geffner, 2017).

Follow-up work combined BFWS with other search techniques.
For example, Katz et al. (2017) combine the concept of novelty with
heuristic estimates, extending the definition of novelty by Shleyfman
et al. (2016) to take into account the heuristic value of the states. This
allows them to quantify how novel a state is, so the search can be
guided directly by this value. However, as this metric is not goal-aware,
Katz et al. need to break ties using traditional goal-aware functions.

Another successful approach is due to Fickert (2020), who uses an
orthogonal approach to the one by Katz et al.: instead of using novelty
as the main guidance for the search, Fickert uses traditional heuristics
to guide a greedy best-first search, and uses a lookahead strategy to
find states with lower heuristic values quickly. This lookahead strategy
is designed to reach states satisfying relaxed subgoals (Lipovetzky
and Geffner, 2014). To make the procedure efficient, he uses novelty
pruning (Fickert, 2018; Lipovetzky and Geffner, 2012) to reduce the
number of evaluated states. Fickert shows that there is a synergy
between the novelty-based lookahead and the hCFF heuristic (Fickert
and Hoffmann, 2017), as the result from the lookahead can be used to
trigger the refinement procedure of hCFF. This idea was also used in
the OLCFF planner (Fickert and Hoffmann, 2018) from the IPC 2018.

The earlier versions of BFWS (e.g., Lipovetzky and Geffner, 2017),
however, still outperform most of the recent novelty-based techniques
(cf. Corrêa and Seipp, 2024).

All the algorithms and almost all the results presented in this chapter
appeared in a previous publication (Corrêa and Seipp, 2022). However,
we provided here a more detailed discussion of some experiments
(e.g., different data structures; different values of k) that did not fit
in the original work. For the IPC 2023, we extended BFWS([RX, h])
to the ground setting, adding even more open lists and different
estimates to it. Our Scorpion Maidu planner (Corrêa et al., 2023c), the
winner of the satisficing track of IPC 2023, uses alternation of open
lists also in combination with novelty estimates. Moreover, it uses

90 lifted width search

more sophisticated open lists, such as type-based queues (Xie et al.,
2014), to add even more exploration to the planner. Scorpion Maidu
also uses gringo (Gebser et al., 2011) as a grounder, instead of the
traditional grounder from Fast Downward (Helmert, 2009). Grounding
algorithms, in general, are discussed in Chapter 6.

Part II

P R O P O S I T I O N A L P L A N N I N G

6
G R O U N D I N G P L A N N I N G TA S K S

Up to this point, we focused on lifted planning, where the planner
works directly on top of a first-order representation. However, most
of the classical planners (e.g., Bonet and Geffner, 2001; Francès et al.,
2018; Helmert, 2006; Hoffmann and Nebel, 2001; Katz and Hoffmann,
2014; Torralba et al., 2014) do not use a lifted representation: as a
first step, they translate the lifted task into a propositional one (e.g.,
Helmert, 2009; Köhler and Hoffmann, 2000). The new representation
helps different parts of the planning algorithms, such as generating
successor states (see Chapter 3), representing states (see Chapter 3),
and computing heuristics (see Chapter 4). Although the translation
can increase the size of the task exponentially, it is still worth doing
for some domains.

One way to perform this translation — and perhaps the most com-
monly used one — is the method by Helmert (2009). It uses four steps:
normalization, invariant synthesis, grounding, and task generation.
While each of these steps is a potential bottleneck, Helmert reports
that in a typical domain about 70% of the translation time is required
for grounding. In this phase, a relaxed version of the task is encoded
as a Datalog program, as introduced in Chapter 4. Grounding this
Datalog program overapproximates the ground actions and atoms
that are reachable from the initial state of the task. This works fine
in most cases because the Datalog programs are simple. However,
grounding Datalog programs is intractable in general as the number
of reachable atoms and actions might be exponential in the size of
the program (Dantsin et al., 2001; Immerman, 1986; Vardi, 1982). As
planners improve, the tasks that users want to solve also become larger
and harder (e.g., Haslum, 2011; Matloob and Soutchanski, 2016). For
example, as we illustrated in the Part i, grounding tasks from our HTG
set is far from trivial and can take more time than solving the task.

In this chapter, we act like Luís Figo switching from Barcelona to
Real Madrid in 2000, and we also switch teams. Instead of continuing
to translate successful ground techniques to the lifted setting, we do
the opposite: we show how all the insights obtained when developing
Powerlifted — decomposing Datalog rules, acyclicity, etc. — can be
used to ground planning tasks more efficiently.

93

94 grounding planning tasks

First, we compare Helmert’s algorithm for Datalog grounding to off-
the-shelf grounders (Gebser et al., 2011). To the best of our knowledge,
this is the first empirical comparison of this kind in planning. We
show that the Answer Set Programming (ASP) grounder gringo can
ground more Datalog programs than Helmert’s algorithm. The crucial
problem in the latter is the high memory usage caused by its rule
decomposition technique. It rewrites the Datalog program such that
reachable atoms can be computed more efficiently by optimized data-
structures. Our empirical results show that this is damaging in many
domains.

We propose a new grounder based on tree decompositions (Arnborg
et al., 1987) and grounding via solving (Besin et al., 2022). Instead
of grounding the entire Datalog program in one shot, we first only
ground the reachable atoms of the task. This can be efficiently done
in all tested instances when combined with rule rewriting techniques
using tree decompositions (Bichler et al., 2016; Morak and Woltran,
2012). Second, we obtain the set of ground actions from the result of
the first step. To do so, we set up an ASP program where each stable
model corresponds to one ground action. ASP solvers (e.g., Gebser et
al., 2019) can enumerate the stable models iteratively without keeping
previous iterations in memory, so they are well-suited for the job.

Our two-phase grounder can ground 10% more tasks than the
method by Helmert in the HTG set. However, it also adds a consid-
erable amount of overhead. While it seems well suited for tasks that
need a lot of memory, it can slow down the grounding phase. A po-
tential concern is that the larger tasks we can now ground are already
out of reach for current planners. But we show that several of these
tasks can still be solved with classical planners.

In this chapter, we introduce several methods that complement each
other. To motivate new methods better, we present the experimental
results for each method as soon as it is introduced.

6.1 baseline : fast downward’s grounder

Perhaps the most commonly used algorithm to obtain a propositional
planning task from a lifted representation is the one by Helmert (2009).
Helmert translates a lifted task into a propositional one in four steps:

1. normalization;

2. invariant synthesis;

3. grounding;

4. generation of the final task.

In this chapter, we focus on the third step: grounding. Helmert in-
troduced the lifted relaxed reachability (Chapter 4) to perform this

6.1 baseline : fast downward’s grounder 95

grounding. We revisit this idea here, and include more details that
were not relevant in Chapter 4.

Given planning task Π = ⟨P , C,A, I, G⟩, the algorithm first encodes
the delete-relaxation Π+ as a Datalog program DI = ⟨F ,R⟩ with facts
F = I and the following rules:

1. For each a ∈ A with pre(a) = {q1(T1), . . . , qn(Tn)} and vars(a) =
T , R contains the action applicability rule

a-applicable(T)← q1(T1), . . . , qn(Tn).

where a-applicable is called an action predicate.

2. For each a ∈ A with vars(a) = T and for each p(T ′) ∈ add(a), R
contains the action effect rule

p(T ′)← a-applicable(T).

3. For G = {g1(T1), . . . , gn(Tn)}, R contains the goal rule:

goal← g1(T1), . . . , gn(Tn).

The additional type predicates (Chapter 2) introduced in each action
schema guarantee that all rules are safe. (This is also done by Helmert’s
algorithm.)

Recall from Chapter 4 that the canonical modelM of DI contains
exactly the atoms that are reachable from I in Π+. To compute M,
Helmert’s algorithm modifies the seminaive evaluation (Chapter 2) by
considering only one atom at each iteration.

The key is how to compute the canonical modelM efficiently. Helmert
decomposes large rules into smaller ones, as these are generally easier
to ground and produce smaller intermediate results. The algorithm
splits all rules until they have one or two atoms in their bodies. This
allows for better data structures and an implementation tailored to
such rules.

There are two types of rule decompositions in the algorithm. The
first selects two atoms q1(T1), q2(T2) in the body of a rule r and intro-
duces the new rule

aux(T)← q1(T1), q2(T2).

where T contains all terms in T1 or T2 that occur in other atoms of
r and the auxiliary predicate aux is a fresh predicate symbol. It then
replaces q1(T1) and q2(T2) in r with aux(T). This is called a join rule
because the new rule enforces the grounder to join q1 and q2.

The second type of decomposition chooses an atom q(T) from the
body of a rule r such that there is a variable V ∈ T that does not occur
anywhere else in r. It then adds the rule

aux(T \V)← q(T).

96 grounding planning tasks

where aux is a fresh predicate symbol, and replaces q(T) with aux(t \
V) in r. This is called a projection rule. Although projection rules do
not decrease the size of the original rule, they project out irrelevant
variables as early as possible.

Example 6.1 Assume we want to decompose the following rule:

a-applicable(X, Y, Z, A)← q1(X, Y, Z), q2(Y, Z), q3(X, A).

We can decompose it by creating a new rule with q1(X, Y, Z) and q2(Y, Z)
in the body to guarantee these two atoms will be joined first:

a-applicable(X, Y, Z, A)← aux(X, Y, Z), q3(X, A).

aux(X, Y, Z)← q1(X, Y, Z), q2(Y, Z).

What is left is how to choose atoms for the decomposition. Note
that different choices on how to decompose rules lead to different
performances. This is one of the main sources of overhead with rule
decomposition.

To decompose rules, Helmert’s algorithm follows two basic princi-
ples: project out unnecessary variables as early as possible, and join
the maximum number of variables (with join decompositions).1 This is
done greedily based on the total number of variables and the number
of joining variables in each atom. While the rule has more than two
atoms in the body, we pick two atoms p and q according to the follow-
ing sequence of rules (without loss of generality, assume that p has at
least the same number of variables as q). Say that in our decomposed
join rule, the joining variables in p and q are denoted by X. Then, we
use the following rules to chose p and q:

1. Prefer joins where |vars(p)| − |X| is largest.

2. If ties need to be broken, prefer joins where |vars(q)| − |X| is
largest.

3. If ties still need to be broken, prefer joins where the |X| is lowest.

In practice, these rules enforce the algorithm to join atoms that share
several variables, but where we can also project out many variables
while doing the join. These rules are nondeterministic as several
choices for p and q might lead to the same values. We assume an
additional fixed deterministic tiebreaker (e.g., lexicographic order over
the variable names) to remove this nondeterminism.

Helmert reports that, although his rule decomposition method
works well in general, there are cases (such as the rovers domain)
where this greedy decomposition is bad.

1 The strategy to decompose joins in Fast Downward’s current implementation no
longer matches the paper: it prefers to decompose atoms with fewer variables while
the paper prefers atoms with many variables. We use the current implementation as
it produced better results.

6.1 baseline : fast downward’s grounder 97

Experiments

Our first experiment compares the grounder by Helmert to gringo

(Gebser et al., 2011, version 5.2.2), an off-the-shelf grounder. To the
best of our knowledge, while others compared to improved versions
of Helmert’s algorithm (e.g., Fišer, 2020), this is the first systematic
comparison to an off-the-shelf grounder.

In the IPC set, all instances can be grounded by all tested methods.
While there are some differences with respect to run time and memory
consumption, they are minor in this set. The few domains that have
some observable differences (e.g., rovers, logistics, visitall) also have
larger counterparts in the HTG set, but the differences are clearer in
the larger tasks. Therefore, to avoid an overload of information, we
restrict most of our observations to the HTG set.

The current implementation of Helmert’s algorithm used in Fast
Downward is implemented in Python. We use PyPy to speed up the
evaluation (compared to the regular Python3 interpreter used in Fast
Downward) but to compare it to gringo on equal footing, we also reim-
plemented the algorithm in C++. We compare both implementations
against gringo with the original Datalog program DI as input.

The first three columns of Table 6.1 show the number of ground tasks
for the three algorithms described above: FD, the baseline implementa-
tion from Fast Downward run with PyPy; FD++, our reimplementation
in C++; and gringo, the off-the-shelf state-of-the-art grounder.
FD++ and gringo can ground a similar number of tasks in most of

the domains, but in blocksworld, rovers, and visitall, gringo grounds
more tasks. The poor performance of FD/FD++ in rovers was already
pointed out by Helmert (2009). Looking closer at this domain, the
challenge is that the set of initial facts is too large and most facts have
the same predicate symbol. Given that the preconditions in rovers are
also complicated (Chapter 3), this makes it hard to rewrite the rules
in a good way: while we want to decompose the rules to perform
clever joins, we also want to minimize the number of joins over large
relations. We reported a similar issue in rovers when studying lifted
successor generators in Chapter 3.

We also analyzed the run time of all methods. Figure 6.1 shows the
number of programs grounded over time. FD++ is usually faster than
gringo in tasks that both can ground. This is expected, as gringo is a
general grounder that can deal with more expressive logic programs
and hence has an overhead on data structures, while FD++ is tailored
to our type of problem. However, as tasks get larger and more compli-
cated to ground, FD++ quickly reaches the memory limit while gringo

manages to ground some of them.
Our hypothesis is that the rule decomposition used in FD++ leads

to too many temporary ground atoms and intermediate joins, which
consumes too much memory. To test this, we evaluated giving gringo

the program DI after the decompositions used by the FD algorithm. The

98 grounding planning tasks

Domain FD FD++ G G+FD G+L

IPC Sum (1001) 1001 1001 1001 1001 1001

blocksworld-large (40) 40 40 40 40 40

childsnack-large (144) 130 130 130 130 130

genome-edit-dist. (312) 312 312 312 312 312

logistics-large (40) 40 40 40 40 40

organic-synthesis (56) 21 21 21 21 21

pipesworld-tankage (50) 42 42 42 42 42

rovers-large (40) 17 21 40 22 40

visitall-multidim. (180) 150 150 174 168 174

HTG Sum (862) 752 756 799 775 799

Table 6.1: Number of grounded tasks by domain for different algorithms. We
abbreviate gringo with G, and lpopt with L.

results are also shown in Table 6.1 as “G+FD”. This indeed decreased
the number of programs gringo could ground to 775, bringing it
closer to the performance of FD++. Most of the loss came from the
domain rovers, where the decomposition works poorly. With the
decomposition gringo could only ground one task more than FD++,
while it grounded 43 more tasks without the decomposition. However,
G+FD still outperforms FD++, being superior in rovers and visitall-
multidimensional. This indicates that the superior performance of
gringo is not only due to the different input, and the state-of-the-art
techniques in gringo play a larger role than the rule decomposition of
FD++.

6.2 a first detour : tree decompositions

A tree decomposition (Arnborg et al., 1987) of a graph G = ⟨V, E⟩ is atree decomposition

tuple ⟨T, χ⟩ consisting of a tree T = ⟨N, F⟩ and a function χ : N → 2V

mapping tree nodes to sets of graph vertices called bags. The functionbags

has to satisfy that

1. for each edge {v1, v2} ∈ E in the graph G, there exists a node
n ∈ N in the tree T such that {v1, v2} ⊆ χ(n),

2. for every vertex v ∈ V in the graph G, there exists a node t ∈ N
in the tree T with v ∈ χ(T), and

3. for every vertex v ∈ V in the graph G, the set {n ∈ N | v ∈ χ(n)}
of nodes in T with v in the bag induces a connected subtree of
T.

6.3 grounding using structural decompositions 99

10−1 100 101 102 103
200

300

400

500

600

700

800

Total time in seconds

G
ro

un
d

Pr
og

ra
m

s

FD++

gringo
gringo+lpopt
iterated

iterated ̸=

Figure 6.1: Number of tasks ground per time (in seconds).

The width of a tree decomposition is w − 1, where w is the size of
the largest bag. The treewidth tw(G) of G is the minimum treewidth treewidth

among all tree decompositions of G. Computing the treewidth of a
graph is NP-hard (Arnborg et al., 1987).

Given a Datalog program D = ⟨F ,R⟩, we can associate each rule
r ∈ R with a graph Gr = ⟨Vr, Er⟩, where Vr = vars(r) and there is an
edge (v1, v2) ∈ Er iff variables v1 and v2 occur together in an atom of
the rule, i.e., v1, v2 ∈ vars(T) for some p(T) ∈ head(r) ∪ body(r). The
treewidth of a rule r is the treewidth tw(Gr).

Tree decompositions are similar to join trees (Chapter 3). But while
in our join trees for conjunctive queries the nodes correspond to atoms,
in a tree decomposition each node corresponds to a set of variables
(the bags) that might cover variables in more than one atom.

6.3 grounding using structural decompositions

Ideally, we want to exploit the structure of the Datalog program more
systematically than FD++’s heuristic approach. Morak and Woltran
(2012) show that programs with bounded treewidth can be grounded
efficiently. They achieve this by decomposing the rules of a Datalog
program based on their tree decompositions. This introduces addi-
tional auxiliary predicates — similar to the ones used by Helmert
(2009). Thereby, it provides indirect guidance to the grounder based
on the structure of the rules.

For a given rule r, the algorithm by Morak and Woltran first com-
putes a tree decomposition T = ⟨N, F⟩. For each node n ∈ N with

100 grounding planning tasks

parent node pn, it then creates a fresh predicate tempn and introduces
a rule

tempn(Yn)←{a ∈ body(r) | vars(a) ⊆ χ(n)}
∪ {tempm | m is a child of n in T}.

where Yn = χ(n) ∪ χ(pn). It finally replaces the original rule with this
set of n new rules and the rule

head(r)← root(Yroot).

where root is the root node of T. These rules produce the same instan-
tiations of head(r) as the original one.

The objective here is no different from the rule decomposition
technique discussed in Chapter 4 or the decomposition performed
by Helmert (2009). Comparatively, the only difference is how exactly
the rules are decomposed. The correctness of this rule decomposition
technique follows from the same reasons given in Chapter 4.

Experiments

We use lpopt (Bichler et al., 2016), an implementation of the technique
described above, to evaluate more systematic decompositions. The
tree decomposition computed by lpopt has no optimality guarantee.

Table 6.2 presents statistical data on the treewidth tw in our do-
mains. We aggregate the information of domains that contain different
domain files (e.g., visitall) into a single row. The rows where column
A has a checkmark ✓ correspond to our original Datalog program.
The other rows are discussed in the next section. Some domains (e.g.,
organic-synthesis and pipesworld) have rules with high treewidth
tw, which is caused by the action predicates: as these usually have
high arity and include all variables of the rule, they force the tree
decomposition to keep all variables until the root, which increases tw.

Table 6.1 shows the number of ground tasks in our benchmark set
using gringo+lpopt (G+L). This technique grounds exactly the same
tasks as gringo without lpopt, and looking at the number of ground
tasks over time in Figure 6.1 shows that the performance of gringo
with and without lpopt is almost identical. This is expected, because
action applicability rules have all variables in the head, due to the
action predicates. Therefore, lpopt cannot project out any variables
during the decomposition, so intermediate predicates end up being
too large. Note that this happens in all domains, and not only in
domains that have large treewidth. Moreover, grounding these large
action predicates requires a lot of memory. In fact, in all instances
where gringo+lpopt (and also simply gringo) fails, it runs out of
memory.

6.4 avoiding to ground actions 101

Domain A tw-range average tw

blocksworld-large
✓ 1–2 1.54 ± 0.52

✗ 1–2 1.33 ± 0.50

childsnack-large
✓ 2–10 4.89 ± 2.52

✗ 2–6 2.80 ± 1.30

genome-edit-distance
✓ 0–5 2.21 ± 0.60

✗ 1–5 1.90 ± 0.48

logistics-large
✓ 3–4 3.17 ± 0.39

✗ 2–3 2.83 ± 0.41

organic-synthesis
✓ 3–22 10.55 ± 3.99

✗ 2–3 2.10 ± 0.29

pipesworld-tankage
✓ 9–12 10.62 ± 1.53

✗ 3–5 3.73 ± 0.63

rovers-large
✓ 2–6 4.23 ± 1.27

✗ 2–3 2.35 ± 0.49

visitall-multidim.
✓ 4–6 5.17 ± 0.83

✗ 4–6 5.17 ± 0.83

Table 6.2: Treewidth tw of the tree decomposition computed by lpopt. Col-
umn A indicates whether action predicates are considered. In the
last column, entry X±Y indicates an average of X and standard
deviation of Y. The visitall-multidimensional domain contains dif-
ferent domain files with different action schemas. For this domain,
we compute the average (and std. deviation) across all domain
files.

6.4 avoiding to ground actions

What happens then if we remove these action predicates from our
Datalog programs? In Chapter 4 we saw that removing action predi-
cates when computing delete-relaxation heuristics had a significant
impact in the performance of Powerlifted. Our aim is to do the same
for grounding.

Recall that given an action applicability rule and an effect rule such
as

a-applicable(T)← q1(T1), . . . , qn(Tn).

p(T ′)← a-applicable(T).

102 grounding planning tasks

Domain FD++ G G+FD G+L

IPC Sum (1001) 1001 1001 1001 1001

blocksworld (40) 40 40 40 40

childsnack (144) 144 144 144 144

genome-edit-dist. (312) 312 312 312 312

logistics (40) 40 40 40 40

organic-synthesis (56) 56 41 56 56

pipesworld-tankage (50) 50 50 50 50

rovers (40) 40 40 40 40

visitall-multidim. (180) 150 180 168 180

HTG Sum (862) 832 847 850 862

Table 6.3: Number of ground simplified program for different algorithms,
without action predicates. We abbreviate gringo with G, and lpopt

with L.

we can replace both rules with the merged rule2

p(T ′)← q1(T1), . . . , qn(Tn).

In the rest of the chapter, we refer to the Datalog program without
action predicates as the simplified (Datalog) program. This simplificationsimplified (Datalog)

program improves the performance of lifted planners (Chapter 4) which do
not need the action predicates. However, we cannot know all relaxed-
reachable ground actions of our task without these predicates. At
first sight, this is an important drawback, because ground planners
must know all the actions in advance. Otherwise, we are just back to
the lifted planning setting, where the ground actions must be decided
at every state. We give a solution to this problem later, but we first
experimentally verify the simplicity of these programs.

Experiments

We compared all previous methods again but now using the simplified
program as input. Table 6.3 shows the number of ground tasks for
each method. The increase in performance is clear: FD++ goes from 756
to 832 ground programs; gringo goes from 799 to 847; gringo+FD++

goes from 775 to 850; gringo+lpopt goes from 799 to all 862 tasks.
This is due to the simpler structure of the programs. Table 6.2 shows
that the average treewidth of the decompositions found by lpopt for
the programs with (column A with ✓) and without (column A with ✗)
action predicates. The decompositions found for the latter have much

2 Note that if a has multiple action effect rules, we repeat the procedure for each one
of them.

6.5 a second detour : answer set programming 103

lower treewidth. In organic-synthesis and pipesworld, the decrease in
average width is more than 70%. This means that a treewidth-based
approach like gringo+lpopt can potentially work much better – and
that is visible in the results of Table 6.3. The only domain where the
treewidth is not reduced is visitall-multidimensional. In this domain,
the predicate indicating the current position of the agent also has large
arity and thus is as harmful as action predicates.

Both FD++ and gringo fail only in one domain. The former cannot
ground all simplified programs of the visitall-multidimensional do-
main. The greedy decomposition used in FD++ does not seem to work
well with the larger predicates in visitall-multidimensional. gringo
fails for some larger organic-synthesis problems, because some of
these tasks have large intermediate relations if the rule bodies are
joined in a bad order. On the other hand, gringo+lpopt can overcome
both problems. The tree decomposition helps gringo to amortize the
impact of larger predicates and to reduce the size of intermediate joins.
This allows gringo+lpopt to ground all simplified programs in our
benchmark set. Furthermore, gringo+FD++ also solves the problem
with the organic-synthesis domain, as it seems that without the action
predicates the decomposition of FD++ works well.

Moreover, gringo+lpopt is faster than all other methods even for
tasks that all can ground. Figure 6.2 shows the run time for both
gringo and gringo+lpopt. Clearly, lpopt improves the performance
of gringo. Concentrating on tasks that took longer than 1 second to
be ground, the only tasks above the diagonal are from the domain
logistics. The tree decomposition found by lpopt seems to do more
harm than good here. Logistics has simple rules, so we believe that
this is another case where the size of the relations and selectivity
might have more impact than decompositions. The domains where
both methods have an almost identical performance are blocksworld
and visitall-multidimensional, where the simplified programs do not
have a large reduction (or no reduction at all) in the treewidth of the
rules.

6.5 a second detour : answer set programming

Until now, whenever we discussed logic programs, we focused ex-
clusively on Datalog programs. We now extend our discussion to
answer set programming. First, recall that we first defined rules using answer set

programmingthe following format (Chapter 2):

h1 ∨ . . . ∨ hk ← p1, . . . , pj,¬n1, . . . ,¬nm.

Once we allow for disjunction in the head and negated atoms (i.e.,
atoms appearing under negation) in the body, our notion of canonical
model is lost.

104 grounding planning tasks

10−210−1 100 101 102 103

10−2

10−1

100

101

102

103

uns.

uns.

gringo (lower for 350 tasks)

g
r
i
n
g
o

+l
p
o
p
t

(l
ow

er
fo

r
4
9
6

ta
sk

s)

blocksworld-large
childsnacks-large
genome-edit-distance
logistics-large
organic-synthesis
pipesworld-tankage
rovers-large
visitall-multidim.

Figure 6.2: Run time comparison between gringo and gringo+lpopt on the
simplified Datalog programs.

Example 6.2 We use the same logic program L as Example 2.1:

pet(bob).

pet(jack).

fish(jack).

dog(X) ∨ cat(X)← pet(X),¬fish(X).

The Herbrand base H(L) of L is

H(L) = {pet(bob), pet(jack), fish(bob), fish(jack),

dog(bob), dog(jack), cat(bob), cat(jack)},

and the set of ground rules Ground(L) contains the following rules

pet(bob).

pet(jack).

fish(jack).

dog(bob) ∨ cat(bob)← pet(bob),¬fish(bob).

dog(jack) ∨ cat(jack)← pet(jack),¬fish(jack).

A possible interpretation is

I1 = {pet(bob), pet(jack), fish(jack), dog(bob)}.

Another possible interpretation is

I2 = {pet(bob), pet(jack), fish(jack), dog(bob), cat(bob)}.

6.5 a second detour : answer set programming 105

There are multiple interpretations for L in Example 6.2, as the
example shows. But not all interpretations are equally satisfactory:
it is not the intention of our program that bob can be both a cat
and a dog, which is violated by I2. In answer set programming, we
consider the stable model semantics (Gelfond and Lifschitz, 1988, 1991) stable model

for interpretations. To define stable models, we first define the notion
of a reduct. The reduct LI of a logic program L = ⟨R,F⟩ with respect reduct

to an interpretation I is defined as LI = ⟨RI ,FI ⟩, where

FI = F ,

RI = {head(r)← body+(r) | r ∈ Ground(R), body−(r) ∩ I = ∅},

body+(r) are the positive atoms of body(r), and body−(r) are the
negated atoms of body(r). The reduct LI can be obtained from a
set of ground rules, by deleting those rules that contain some (ground)
atom in I occurring negatively in the body of r, and by deleting all
negated atoms in the body of the remaining ground rules.

The interpretation I is a stable model of L if I is a model of L and
no proper subset of I is a model of the reduct LI (Bliem et al., 2020).

Example 6.3 The reducts LI1 and LI2 are the same:

pet(bob).

pet(jack).

fish(jack).

dog(bob) ∨ cat(bob)← pet(bob).

Therefore, I2 is not a stable model as I1 ⊂ I2 and I1 is also a model of the
reduct LI2 . On the other hand, I1 is indeed a stable model of L. But it is not
the only one either:

I3 = {pet(bob), pet(jack), fish(jack), cat(bob)}

is also a stable model of L.

Deciding whether there exists a stable model of a given logic pro-
gram is NP-hard (Dantsin et al., 2001). 3 The problem remains hard
even if the rules (but not the facts) are fixed.

In our ASP programs, we also use choice rules. These are rules of the choice rules

form

n {p(X) : r(X)}m.

expressing that at least n and at most m atoms p(X) have to be chosen,
and for each chosen atom r(X) must also be in the model. We only
need the specific case where n = m = 1:

1 {p(X) : r(X)} 1.

3 More precisely, the problem of deciding whether a stable model exists is complete for
the second level of the polynomial hierarchy – i.e., ΣP

2 -complete. This is believed to
fall in between NP and PSPACE.

106 grounding planning tasks

stating that exactly one p(X) must be chosen for which r(X) is in the
model. This rule is just syntactic sugar and it can be simulated with
two additional predicates has-p/0 and p′/1 and the following rules.4

The rules

has-p← p(X).

⊥ ← ¬has-p.

ensure that at least one p(X) is in the model; the rule

⊥ ← p(X), p(Y), X ̸= Y.

ensures that at most one p(X) is in the model; and the rule

p(X) ∨ p′(X)← r(X).

allows the model to contain p(X) if it contains r(X), but does not
enforce it — it could contain p′(X) instead. (A stable model cannot
contain both p(X) and p′(X) due to the minimality condition.)

When a choice rule is ground, we simply represent it as a set of
ground atoms. Given ground atoms g1, . . . , gn, the choice rule

1 {g1, . . . , gn} 1.

indicates that exactly one gi for 1 ≤ i ≤ n can be part of any stable
model.

6.6 grounding via iterated solving

On the one hand, the simplified program, without action applicability
rules, is much simpler to ground while its model still contains all
relaxed-reachable atoms of the task. On the other hand, it does not
contain any information about the ground actions of the task. How do
we obtain the set of ground actions from the relaxed-reachable atoms?

One trivial solution is to unify the preconditions of each action with
the set of reachable atoms. In other words, we join the preconditions of
the action, similarly to what we did in Chapter 3 for the lifted successor
generation. Although simple in theory, this is not straightforward: the
intermediate results of this join can be exponentially large. While
we can try to solve this issue with more sophisticated methods (e.g.,
Gottlob et al., 2002), keeping track of all intermediate results would
still yield a large memory footprint. An alternative is to produce one
ground action at a time sacrificing run time for memory. Unfortunately,
we are not aware of any specific solver with this particular feature (i.e.,
generate answers to the join one by one, without keeping track of all
intermediate results).

4 This assumes that predicate symbol p occurs only in one choice rule. If p(X) appears
in more choice rules or in the head of other rules, we must use extra predicate
symbols.

6.6 grounding via iterated solving 107

But there are other techniques in the literature that we can use
off-the-shelf and have the exact advantages that we are looking for:
generate ground actions one by one without keeping track of exponen-
tially large intermediate results. We introduce a two-phase method,
inspired by the techniques of grounding via solving (Besin et al., 2022). grounding via

solvingFirst, we use the simplified Datalog programs to compute a modelM,
containing all relaxed-reachable atoms. For each action schema, we
then construct a logic program with factsM where every stable model
represents one relaxed-reachable instantiation of the action schema.

For a set of factsM and an action applicability rule r

a-applicable(T)← q1(T1), . . . , qn(Tn).

we create the logic program Lr = ⟨F ,R⟩ with F =M, and rules R
as follows. For a given rule r with body(r) = {q1(T1), . . . , qn(Tn)}, and
a variable V ∈ vars(r), let {qV

1 (T
V
1), . . . , qV

m(TV
m)} ⊆ body(r) be the set

of all atoms in the body of r such that V ∈ TV
i for 1 ≤ i ≤ m ≤ n. For

every variable V ∈ vars(r), we introduce a fresh predicate V-assign
and the following choice rule:

1 {V-assign(V) : qV
1 (T

V
1), . . . , qV

m(T
V
m)} 1.

where V ∈ Ti for 1 ≤ i ≤ m. This rule forces the stable model to pick
for each variable exactly one constant that unifies with the set F of
facts and thus form a variable assignment.

Further, for every (non-ground) atom qi(X1, . . . , Xk) ∈ body(r), we
introduce the rule

⊥ ←V1-assign(X1), . . . , Vk-assign(Xk),¬qi(X1, . . . , Xk).

This rule guarantees that the assignment encoded in the V-assign
predicates is consistent with the instantiations of qi(X1, . . . , Xk) in all
stable models of Lr.

The program Lr has multiple stable models. Each one corresponds
to one ground action of A. For each variable V, the stable model of
has exactly one atom V-assign(c), for the constant c that instantiates
V in the ground action.

The overall approach is then to iteratively solve and enumerate all
stable models of Lr, thereby constructing all relaxed-reachable actions.
This approach relies on the common guess-and-check technique of
ASP solvers. The advantage is that we generate one stable model per
iteration without keeping track of previous ones. This keeps memory
in check, as we do not have to generate all ground actions at once.

One could try to use our grounding via solving with simpler ASP
programs in the second phase. The most straightforward idea is to
create an ASP program for each action schema a containing the single
rule

a-applicable(T)← p1(T1), . . . , pn(Tn).

108 grounding planning tasks

where {p1(T1), . . . , pn(Tn)} = pre(a) and the set of facts is also the set
of reachable atoms from the first phase. But note also that our logic
program in the second phase must be ground before the stable models
can be computed. Unfortunately, grounding this single rule can be
very expensive. In our logic program Lr above, however, grounding is
trivial, as we see in the next example.

Example 6.4 In a logistics problem (Example 2.4), assume we have a drive
action that allows a truck to drive from a city C1 to an adjacent city C2. In
our Datalog program, we have the following two rules:

drive-applicable(T, C1, C2)← at(T, C1), adj(C1, C2).

at(T, C2)← drive-applicable(T, C1, C2).

When we remove action applicability predicates, we obtain the following rule
r in our simplified program:

at(T, C2)← at(T, C1), adj(C1, C2).

Let’s also say that we have the following modelM from our first stage:

adj(a, b).

adj(b, a).

adj(b, c).

adj(c, b).

at(t, a).

at(t, b).

at(t, c).

This encodes that cities a and b are adjacent, and so are cities b and c, and
that the truck t can be in any of the three cities.

In our second stage, we generate the following program Lr:

1 {T-assign(T) : at(T, C1)} 1.

1 {C1-assign(C1) : at(T, C1), adj(C1, C2)} 1.

1 {C2-assign(C2) : adj(C1, C2)} 1.

⊥ ← T-assign(T), C1-assign(C1),¬at(T, C1).

⊥ ← C1-assign(C1), C2-assign(C2),¬adj(C1, C2).

6.6 grounding via iterated solving 109

Grounding this program withM we obtain (omitting the facts fromM):

1 {T-assign(t)} 1.

1 {C1-assign(a), C1-assign(b), C1-assign(c)} 1.

1 {C2-assign(a), C2-assign(b), C2-assign(c)} 1.

⊥ ← T-assign(t), C1-assign(a),¬at(t, a).

⊥ ← T-assign(t), C1-assign(b),¬at(t, b).

⊥ ← T-assign(t), C1-assign(c),¬at(t, c).

⊥ ← C1-assign(a), C2-assign(b),¬adj(a, b).

⊥ ← C1-assign(b), C2-assign(a),¬adj(b, a).

⊥ ← C1-assign(b), C2-assign(c),¬adj(b, c).

⊥ ← C1-assign(c), C2-assign(b),¬adj(c, b).

This program has 4 stable models:

1. M∪{T-assign(t), C1-assign(a), C2-assign(b)}

2. M∪{T-assign(t), C1-assign(b), C2-assign(a)}

3. M∪{T-assign(t), C1-assign(b), C2-assign(c)}

4. M∪{T-assign(t), C1-assign(c), C2-assign(b)}

They correspond to the following relaxed-reachable instantiations of the action
drive:

1. drive(t, a, b)

2. drive(t, b, a)

3. drive(t, b, c)

4. drive(t, c, a)

Note also that not all combinations of assignment of the choice rules yield
a stable model: for example, choosing C1-assign(a) and C2-assign(a) never
leads to a stable model.

Experiments

We call the two-phase approach described above iterated. Our im-
plementation first uses gringo+lpopt to get M from the simplified
program, and then uses clingo (Gebser et al., 2019) to iteratively gen-
erate ground actions from the logic program above. Table 6.4 shows
the results. Compared to the methods that ground action predicates
(Table 6.1), iterated grounds more tasks in total. It is better in the
domains childsnack, organic-synthesis, and pipesworld, but worse in
domains rovers. As discussed earlier, the rovers domain is challenging
for the methods only exploiting structural properties.

110 grounding planning tasks

Domain iterated iterated ̸=

IPC Sum (1001) 1001 1001

blocksworld (40) 40 40

childsnack (144) 142 144

genome-edit-dist. (312) 312 312

logistics (40) 40 40

organic-synthesis (56) 23 32

pipesworld-tankage (50) 50 50

rovers (40) 23 23

visitall-multidim. (180) 180 180

HTG Sum (862) 810 821

Table 6.4: Number of grounded tasks for iterated and iterated ̸=. We ab-
breviate gringo with G, and lpopt with L.

While iterated can solve tasks where other methods run out of
memory, it is much slower than any other algorithm. Figure 6.1 shows
the run time of iterated. Even for simple tasks, iterated takes more
time than any other algorithm. Noticeable overhead comes from the
communication of the different components, i.e., the effort of setting
up the model, handling the result, calling clingo multiple times for
each action schema.

Still, some tasks were not grounded by any method (ignoring meth-
ods that ground only simplified programs). More precisely, there are
33 organic-synthesis tasks that cannot be grounded by any algorithm.
To see how far we are from grounding these tasks, we used a model
counter to check (without even generating the model) the number
of ground actions in these tasks. We use the model counter and the
preprocessor by Lagniez and Marquis (2014, 2017). To do it efficiently,
we apply our two-phase approach but, in the second phase, instead
of enumerating all ground actions, we translate the program to a
propositional formula with the tools by Janhunen (2006), and then
simply count the models. For more details on state-of-the-art model
counters, we refer to the survey by Fichte et al. (2021).

The smallest (in number of ground actions) task from organic-
synthesis that we cannot ground has 30 · 108 ground actions. The
largest one has 60 · 1035 ground actions. For comparison, the largest
instance that our algorithms could ground had 20 · 107 ground actions
in total. Even considering an oracle model that provides the list of
relaxed-reachable atoms and actions instantly, these tasks seem out of
reach of ground planners. The amount of storage necessary to simply
represent these tasks is prohibitive.

6.7 more informed logic programs 111

6.7 more informed logic programs

An orthogonal way to improve Datalog-based grounders for planning
is to use additional information to refine the model and thus make
it smaller. One example of this approach is the work by Fišer (2020)
that uses lifted mutexes to improve grounding. Fišer interleaves the
FD algorithm with a filter to remove ground atoms violating mutexes.

We propose an approach that does not modify gringo or iterated.
This is desirable because as these specialized tools evolve, we can still
use them off-the-shelf without having to adapt any implementation.
So instead of changing the algorithm, we simply modify the Datalog
program to consider negated static predicates in preconditions. Static
predicates are those predicates that only occur in preconditions but
never in effects. When we create the Datalog program of the task, static
predicates never occur in the head of any rule (they are extensional
predicates). We can exploit this by adding any negatively occurring
static predicate to the body of its action applicability rule (also nega-
tively). This transforms our Datalog program into a stratified Datalog stratified Datalog

program, but it still preserves the uniqueness of the canonical model
(Ullman, 1988, 1989).

In our benchmark set, the only occurrences of negated static pre-
conditions are inequality constraints. (Other known PDDL domains,
such as termes and tetris, have different negated static predicates in
action preconditions.) Below, we refer directly to inequality constraints
but the technique works for any static predicate. Inequalities have the
additional advantage that they can be treated as a built-in predicate
by gringo. (Note that this is also the case in PDDL.)

But Fast Downward, for example, already removes actions that
violate inequalities in a postprocessing step (Helmert, 2009). Let us call
these actions impossible actions. However, FD can still produce actions
that are only relaxed-reachable via impossible actions. Incorporating
inequalities into the logic programs solves this problem.

Example 6.5 Consider the following Datalog program:

p(c).

a-applicable(X, Y)← p(X), p(Y), X ̸= Y.

b(X)← a-applicable(X, Y).

G ← b(c).

The canonical model of this program is

M = {p(c)},

and the task is relaxed unsolvable, since the goal atom G is not inM.
If X ̸= Y is removed from action applicability rule, then the canonical

model is

M = {p(c), a-applicable(c, c), b(c), G}.

112 grounding planning tasks

The FD algorithm postprocesses the ground actions and identifies that
a-applicable(c, c) is an impossible action, because it violates a static precon-
dition. Hence, this action is discarded. But FD cannot do that for b(c) and G
unless it keeps track of all derivations. So this task is still considered solvable
by FD although it is not.

Experiments

We tested our algorithms using inequalities in the logic programs.
We report the number of ground tasks for iterated with inequali-
ties, called iterated ̸=, in Table 6.4. For this algorithm, we only use
inequalities in the second phase. We do not use them in the first phase
because they harm lpopt: inequalities make the preconditions very
dense and hence the treewidth much higher. For example, the average
treewidth found by lpopt goes from 2.1(±0.29) up to 4.6(±1.45) in the
simplified programs of organic-synthesis when adding inequalities.

Compared to iterated, iterated ̸= grounds 2 additional tasks in
childsnack and 9 additional tasks in organic-synthesis. Inequalities also
occur in genome-edit-distance, but the instances are not challenging
enough to observe any difference. However, even in tasks that both
methods can ground, considering inequalities improves the speed of
the grounder. Figure 6.1 also shows the time of iterated ̸=, and is has
a clear edge over iterated in terms of time. In an extreme example,
iterated took 840s to ground a task, while iterated ̸= needed 7s.

Even with inequalities, there are still tasks in organic-synthesis that
could not be grounded. We repeated our counting experiment but
now also considering inequalities. In this case, the smallest instance
in organic-synthesis has “only” 23 · 108 actions, and the largest has
81 · 1033. Although this is a significant reduction in the number of
actions in the worst case, these numbers are still too large for current
grounders and planners.

6.8 solving planning tasks

So far, we have focused on the grounding step. However, this is not the
only complicated step of the translation from PDDL to a propositional
task. Moreover, tasks that our algorithms can now ground might still
be out of reach of planners, producing no additional gain from better
grounding.

As a proof of concept, we compared the coverage of LAMA (Richter
and Westphal, 2010) using different grounders. LAMA originally
uses the FD algorithm. We tested replacing it with gringo, and with
iterated ̸=. Table 6.5 shows the results. In 4 out of the 8 domains,
all methods have the same coverage. With its original grounder (FD),
LAMA achieves a better coverage in logistics, while using gringo

solves more tasks in rovers and organic synthesis. LAMA with gringo

solves many additional instances in these two domains, particularly in

6.9 summary 113

Domain FD G iterated ̸=

blocksworld (40) 12 12 12

childsnack (144) 116 116 116

genome-edit-dist. (312) 312 312 312

logistics (40) 36 32 30

organic-synthesis (56) 21 30 27

pipesworld-tankage (50) 18 18 18

rovers (40) 17 40 23

visitall-multidim. (180) 72 72 72

Total (862) 604 632 610

Table 6.5: Coverage of LAMA using different grounders. FD is the original
algorithm used in LAMA; G is the gringo algorithm; iterated ̸=

uses the two-phase grounding approach incorporating inequalities.

rovers. All tasks in rovers are easy to solve and were beyond LAMA’s
capacity only due to its grounder. We can say the same about organic-
synthesis, a domain known for having short plans. Using iterated ̸=

is never the best option in any of our domains.
We also analyze the run time of each method. Figure 6.3 compares

the number of instances solved over time. There is a clear ordering
there: FD is the slowest, followed by iterated ̸= and gringo. This
agrees with our previous observation (see Figure 6.1) that iterated ̸=

is much slower than gringo. However, in the context of solving the
planning tasks, the slow-down caused by the two-phases of iterated ̸=

is harmful, as it does not leave enough time for the search component
of LAMA.

Overall, our experiments show that using new grounding algorithms
helps to increase the number of solved tasks.

6.9 summary

In this chapter, we studied alternatives to the grounding algorithm
by Helmert (2009), which uses logic programming to find the relaxed-
reachable actions of a planning task.

Our empirical results showed that replacing the original FD algo-
rithm with more modern grounders for logic programs yields superior
results in terms of the number of ground tasks.

We also presented a more sophisticated method, called iterated ̸=,
that decouples the grounding procedure into two phases: one to obtain
all relaxed-reachable atoms, and one to obtain all relaxed-reachable
actions. This approach uses the insights obtained from Part i. While
this method can ground more logic programs, it is also slower than off-

114 grounding planning tasks

100 101 102 103
300

400

500

600

Total time in seconds

So
lv

ed
Ta

sk
s

LAMA + FD
LAMA + gringo

LAMA + iterated ̸=

Figure 6.3: Number of tasks solved over time (in seconds) using LAMA with
different grounders.

the-shelf grounders, such as gringo. Our experiments also showed that
most tasks not grounded by any method are impractical to ground, as
they have an enormous number of actions. Both gringo and iterated ̸=

help classical planners solve more tasks. This means that some tasks
that we can now ground were already in reach of classical planners.

To deal with the tasks that we could not ground, one should look
into grounders not based on delete-relaxation or lifted planners. We
also believe that iterated could be used to ground Datalog programs
in general, outside the planning context.

chapter notes & history

We focused on Datalog-based grounders for classical planning, but
there are other grounding algorithms in the literature. IPP (Köhler
and Hoffmann, 2000) grounds action schemas one by one, and prunes
partially ground actions as soon as they violate static preconditions.
One issue with this approach is that the final model is even larger
than the relaxed-reachable one. The grounder used in the FF planner
(Hoffmann and Nebel, 2001) also relies on this pruning technique.
It first executes the IPP grounder and then reduces the set of atoms
and actions by identifying which ones are relaxed-reachable. Helmert
(2009) reports that both of these grounders are usually fast, but FD has
better scalability. To add this pruning technique, we need to change the
grounding algorithm, while our approach on how to exploit negated
static preconditions only modifies the logic program used as input.

There are techniques in the planning literature to improve the
grounder by Helmert (2009). Fišer (2020) presents an algorithm to
exploit mutex groups during grounding. The algorithm uses fact-

6.9 summary 115

alternating mutex groups (fam-groups) to prune actions identified as
unreachable during grounding. It is not clear how one could incorpo-
rate these ideas into our algorithms. Although fam-groups could be
encoded as choice rules and aggregates (Gebser et al., 2019) into our
logic programs, the extra rules need to be grounded before finding a
stable model, which defeats the purpose of Fišer’s algorithm. However,
it should be possible to incorporate the pruning based on fam-groups
into the seminaive algorithm (as in the original paper).

An alternative solution is the incremental grounding by Gnad et
al. (2019). Their idea is to ground only part of the relaxed-reachable
atoms and actions first, then try to find a plan with this limited
set. If no plan is found, the process restarts with more atoms and
actions. In their work, Gnad et al. use machine learning to identify the
subset of atoms and actions that should be grounded. Their method
could be integrated with our iterated algorithm: after computing the
first phase (using gringo+lpopt) we could compute only some stable
models of the second phase (e.g., a maximum number of instantiations
per action schema).

An orthogonal approach is to optimize how the domains are en-
coded, instead of improving the grounding algorithms. Haslum (2007)
show that many planning domains are harder than necessary due to
“accidental complexity”: encodings hiding structures of the task that
could be exploited by planners and grounders. Haslum shows that,
in some cases, it is possible to automatically remove this accidental
complexity using some simpler transformations. A different way to
optimize the model is via action schema splitting. By splitting action
schemas into smaller ones, grounding becomes easier. This split can
be done by hand (e.g., Haslum, 2011) or automatically (Areces et al.,
2014; Elahi and Rintanen, 2024). To help the grounding process, these
algorithms transform an action schema with multiple variables into
several schemas with few variables. This is the same idea as Helmert’s
decomposition techniques in Datalog that we also applied here. Elahi
and Rintanen (2024) show that good action schema splits are preferable
over lifted planning in many domains.

One of our contributions in this chapter was the use of structural
decompositions to speed up the grounder. Longo (2023) continues this
study with other decomposition techniques. In his work, Longo uses
hypertree decompositions instead of tree decompositions. He shows
that we can efficiently compute optimal hypertree decompositions for
all rules in our benchmark. In the HTG set, the hypertreewidth (anal-
ogous to treewidth) is at most 2, which is lower than the treewidth
computed by lpopt. However, decomposing rules based on their hy-
pertreewidth yields worse performance than using lpopt. At first sight,
the hypertree decompositions significantly improve the performance
of the grounder in the rovers domain. But Longo shows that this is by
chance: the decomposition found by his method seems to be “lucky”,

116 grounding planning tasks

as they quickly filter the large initial relations of this domain. By
switching some tiebreakers and parameters in his algorithm, the new
decompositions found no longer perform well in the rovers domain.
This supports our earlier hypothesis that in some domains we might
want to use extra information when decomposing rules (e.g., size of
relation in the initial state).

Our original paper (Corrêa et al., 2023e) already presented all the
techniques introduced in this chapter. There are some minor differ-
ences, however. Most importantly, our original definition of iterated
used only type predicates in the choice rule defining the values for
V-assign(X). The current presentation includes in the choice rule all
atoms that mention variable X. Although not strictly necessary for
correctness, this change decreased run time in almost 30% in some
instances. Additionally, since the original publication, we extended
our grounder to support other off-the-shelf grounders, such as I-DLV
(Calimeri et al., 2017; Faber et al., 2012). The results are very similar
if we switch gringo with I-DLV. We only presented the results using
gringo to keep consistency with the published work, and because it
presents a better performance.

Part III

P L A N N I N G W I T H O B J E C T C R E AT I O N

7
P L A N N I N G W I T H O B J E C T C R E AT I O N

Bob, a former classical planning researcher, opens a new logistics
company. Real life, however, is not so simple. He first needs to decide
how many trucks he should buy. Buying many trucks is not an issue
— Bob became very rich working on classical planning — but he still
wants to minimize his expenses. He decides to tackle this problem
using classical planning. Bob encodes the delivery locations and the
roads connecting them in PDDL (Haslum et al., 2019; McDermott,
2000). He then declares a bunch of truck objects in advance, and
cleverly encodes his actions to balance the costs between buying a new
truck and doing more deliveries with the same truck. But how does
he know how many trucks to declare in advance? Can he estimate
an upper bound? Computing it seems as if he is solving the problem
himself, so he goes with a rough estimate of 10 trucks. But does the
optimal solution only require 10 trucks? What if it requires much
more? Bob gets worried and increases the number of trucks to 1,000.

He finally formalizes his problem and runs it on some classical
planners. All planners take months to solve his task. At the end,
the optimal plan uses 11 trucks. Even if 98.9% of the truck objects
were irrelevant, they still impacted the performance of the planners
(Fuentetaja and de la Rosa, 2016; Silver et al., 2021). Bob ends up
frustrated with the whole procedure. If only there was a native way to
let planners introduce more objects as they plan.

In this chapter, we introduce a novel way of dealing with problems
where the objects are not all known upfront. Instead of preemptively
declaring all objects in the definition of the task, objects can be created
via action effects. There are three immediate benefits to this extension:

(i) it makes the encoding simpler and more natural for several
domains (e.g., Long and Fox, 2003),

(ii) it reduces the amount of expert knowledge needed in the domain
encoding (e.g., Petrov and Muise, 2023), and

(iii) it might improve performance of planners by reducing state size
and number of unnecessary objects (e.g., Fuentetaja and de la
Rosa, 2016).

On the theoretical side, we prove that classical planning with object
creation is semi-decidable. In other words, if a plan exists we are guar-

119

120 planning with object creation

anteed to find it. However, no algorithm can recognize, in general, if a
task is unsolvable. This is still the case even if we restrict our input
to delete-free tasks. If we talk about bounded plan existence though, the
problem becomes decidable.

On the practical side, we introduce a PDDL (Haslum et al., 2019;
McDermott et al., 1998) extension that allows for object creation in the
effect of actions. Moreover, we show that Powerlifted (and potentially
any lifted planner with a similar representation) is well-suited to
solve this problem. From Chapter 3, we know that lifted successor
generation can be cast as a conjunctive query problem. A conjunctive
query can be solved based only on the current state being expanded.
This implies that when generating successors for two different states,
the algorithm implemented in Powerlifted does not care if the set of
objects differs. With minor changes in state representation and parsing,
Powerlifted is already fully-equipped to execute a breadth-first search
in tasks with object creation. Beyond breadth-first search, we extend
the width search algorithms from Chapter 5 to take into account the
number of objects in the evaluated state. In our experimental results,
Powerlifted has better performance when using the PDDL extension
in comparison to the original PDDL encodings where all objects are
declared beforehand and object creation is simulated with auxiliary
predicates.

7.1 details of first-order logic

Hitherto, all previous chapters assumed a background on logic. In this
chapter, we use a more specific notation of first-order logic.

We consider first-order languages L = ⟨V , C,P⟩. As before, V is a
finite set of variables, C is a finite set of constants, and P is a finite set of
predicate symbols. We continue to restrict our definitions to languages
without function symbols.

An interpretation over a first-order language L is a tuple I =interpretation

⟨UI , {cI}c∈C , {pI}p∈P ⟩ consisting of

• a finite set UI of objects called the universe;objects

universe
• for each constant c ∈ C, its interpretation cI ∈ UI .

• for each predicate symbol p ∈ P , its interpretation pI ⊆ (UI)ar(p).
We write p(o1, . . . , oar(p)) to indicate that ⟨o1, . . . , oar(p)⟩ ∈ (UI)ar(p)

For the interpretation of predicates, we also define PI = {pI}p∈P to
shorten notation. In our context, interpretations are always finite.

7.2 planning formalism

To add object creation to our formalism, we must change our definition
of a planning task (Chapter 2). States now correspond to first-order

7.2 planning formalism 121

interpretations, where the set of existing objects is given by the uni-
verse of the state, and not by a fixed set of constants. The initial set C
of constants represents only those constants that occur in the goal or
in some action schema. When applying an action a to transition from
some state s to a state s′, if an object is created, a new object o /∈ U s is
added to U s′ .

Formally, a planning task with object creation is a tuple Π = ⟨L,A, I, G⟩, planning task with
object creationwhere L = ⟨P , C,V⟩ is a first-order language; I is the initial state; G is

the goal; A is a finite set of action schemas, defined below.
States are interpretations over L. We assume a fixed interpretation

of constants, where a constant c ∈ C is always mapped to an object
oc ∈ U s in any state s (i.e., cs = oc for all s). This means that every
constant c is always mapped to the same object oc, and any two states
have exactly the same interpretation of constants. (Recall that, as just
mentioned, constants in C are those appearing in the goal and in action
schemas.) Therefore, we drop the interpretation of constants from our
notation, and write states simply as s = ⟨U s, {ps}p∈P ⟩. Later, created
objects will correspond to objects in U s but never to constants.

The goal G is a set of ground atoms.
In contrast to other chapters, we drop the assumption that our states

have an implicit inequality relation (̸=).

Example 7.1 We use the logistics scenario from the introduction as a run-
ning example. Our task has a package p1 initially located at city c1. There
are two cities, c1 and c2, which are connected. The city c1 is the headquarters
of the company. The goal is to move p1 from c1 to c2.

The predicate symbols are at/2, in/2, adj/2 and headquarters/1. The ini-
tial state I has:

U I := {op1 , oc1 , oc2}
P I := {adj(oc1 , oc2), adj(oc2 , oc1),

at(op1 , oc1), headquarters(oc1)}.

We define the goal G = {at(p1, c2)}.
Action schemas are defined in Example 7.2 below.

An action schema a ∈ A is a triple a = ⟨pre(a), add(a), del(a)⟩ where
each element is a set of atoms as before. However, in contrast to our
original definition (Chapter 2), the set of variables of action a is now a
pair vars(a) = ⟨params(a), fresh(a)⟩, where

• params(a) ⊆ V is the set of action parameters; action parameters

• fresh(a) ⊆ V is the set of fresh variables; fresh variables

• params(a) ∩ fresh(a) = ∅.

We define vars(pre(a)), vars(add(a)) and vars(del(a)) as sets of vari-
ables, where

122 planning with object creation

• vars(pre(a)) ⊆ params(a);

• vars(add(a)) ⊆ params(a) ∪ fresh(a);

• vars(del(a)) ⊆ params(a).

Intuitively, action parameters must be instantiated with objects in the
universe of the current state, and fresh variables must be instantiated
with new objects. The object selected to instantiate a fresh variable is a
called a fresh object.fresh object

Example 7.2 We detail two action schemas, buy and move, from our run-
ning example, where

pre(buy) = {headquarters(L)}
add(buy) = {at(T, L)}
del(buy) = ∅

pre(move) = {at(T, L), adj(L, M)}
add(move) = {at(T, M)}
del(move) = {at(T, L)}.

Action schema buy says “if L is the headquarters, then add a new truck to
L”; and move says “move a truck T from location L to M”.

These two action schemas have the following action parameters and fresh
variables:

params(buy) = {L}
fresh(buy) = {T}

params(move) = {T, L, M}
fresh(move) = ∅.

When applying the buy action in a given state, the variable T must be
instantiated with a fresh object, while variable L must be instantiated with
an object that exists in the current state. For action move, all variables must
be instantiated with existing objects.

Given a state s and an action schema a ∈ A, a variable assignment
function σs,a maps variables in params(a) ∪ fresh(a) to objects.1 Wevariable assignment

function enforce the following two properties on σs,a:

• σs,a(v) ∈ U s for all v ∈ params(a);

1 This is similar to the definition of substitution function, but here we map variables to
a universe, and not to the set of constants (Chapter 2). We can assume that the image
of the function is an underlying infinite universe U , containing all possible objects.
However, including such a universe with infinitely many objects to the object does
not fit conceptually with the notion of a classical planning task. This approach makes
things more complicated once we allow for fragments that are more expressive than
STRIPS (see chapter notes).

7.2 planning formalism 123

• σs,a(v) /∈ U s for all v ∈ fresh(a).

Any variable assignment function maps action parameters to objects
in the state, and fresh variables to objects not in the state.

A ground action σs,a(a) is applicable in s if s |= σs,a(pre(a)).2 The
successor state succ(s, σs,a(a)) is defined as follows. Let new(σs,a) be the
set of new objects introduced by σs,a defined as

new(σs,a) = {σs,a(v) | v ∈ fresh(a)}.

Then succ(s, σs,a) = ⟨U ′, (p′)p∈P ⟩ is defined as

U ′ = U s ∪ new(σs,a)

p′ = (ps \ σs,a(del(a)) ∪ σs,a(add(a))).

Example 7.3 Let σI,buy be defined as follows:

σI,buy(L) = c1

σI,buy(T) = t.

As fresh(buy) = {T}, the set of new objects introduced by σI,buy is

new(σI,buy) = {t},

and the successor state s1 = succ(I, σI,buy) is s1 = ⟨U s1 ,P s1⟩, where

U s1 := {p1, c1, c2, t}
P s1 := {adj(c1, c2), adj(c2, c1),

at(p1, c1), at(t, c1), headquarters(c1)}.

The reachable state space of our task can thus be interpreted as a
graph over first-order interpretations. It is important to observe that
although we have variables mapped outside the universe U s in σs,a,
this does not influence any semantics of first-order logic. The only
time the semantics of interpretations is necessary is when checking
action applicability (s |= σs,a(pre(a))), but here it is enough to consider
a restriction σs,a|params(a) of σs,a, which is well-defined over the inter-
pretation s. The new objects (not in U s) are only necessary to identify
how any two connected interpretations change in the state space.

A plan for state I is a sequence σs0,a1(a1), . . . , σsn−1,an(an) of ground
actions such that s0, . . . , sn are states where s0 = I and σsi−1,ai(ai) is
applicable in si−1 and si = succ(si−1, σsi−1,ai) for 1 ≤ i ≤ n, and sn |= G.

We introduce two natural decision problems:

ObjCreation-PlanEx

Input: A planning task with object creation Π.
Question: Is there a plan π for Π?

2 Note that since variables in precondition must be action parameters, which are
mapped to objects in the U s, the operator |= is well-defined.

124 planning with object creation

ObjCreation-PlanLen

Input: A planning task with object creation Π,
a number k ∈N.

Question: Is there a plan π for Π where ∥π∥ ≤ k?

ObjCreation-PlanEx is analogous to PlanEx in the case without
object creation; ObjCreation-PlanLen is analogous to PlanLen. Re-
member from Chapter 2 that PlanEx is EXPSPACE-complete and
PlanLen is NEXPTIME-complete when using lifted representation
for Π, and both are PSPACE-complete with a propositional repre-
sentation. As we show in the next section, there is no algorithm
deciding ObjCreation-PlanEx in general. However, when the answer
to ObjCreation-PlanEx is “yes”, a breadth-first search is guaranteed
to eventually find a plan.

PDDL Extension

We extend the PDDL syntax with the keywords :new, which allows
for the creation of objects The syntax is as follows:

(:new (?v1 . . . ?vN) eff)

where v1, . . . , vN are fresh variables and eff is an effect. In contrast to
the logic formalism above, the PDDL syntax declares all fresh variables
as part of the effects. We chose this design because it is closer to the
PDDL concept, and it fits more naturally with more expressive PDDL
fragments (see chapter notes).3

Example 7.4 In our running example, the action buy is written in PDDL
as

(:action buy

:parameters (?L)

:precondition (headquarters ?L)

:effect (:new (?T) (at ?T ?L)))

This extension simplifies many PDDL models. With standard PDDL,
domain experts need to puzzle out how to simulate object creation.
This usually involves adding extra predicates and modifying condi-
tions to take these predicates into account. For example, in the original
Settlers domain (Long and Fox, 2003) vehicles can be created during
the search. To encode this in PDDL, the authors introduced a new
predicate potential indicating that an object is a potential vehicle.

3 In PDDL, parameters can be typed. We also allow for this in our PDDL extension, but
do not include types in our mathematical formalization for simplicity, as standard
predicate logic is untyped. Likewise, PDDL does not have an explicit split between
add and delete lists in the effects, but a single section called :effect. It is simple to
convert this into our add and delete lists distinction: positive atoms in the effect are
part of the add list, while negated atoms are part of the delete list.

7.3 decidability results 125

This leads to a domain model that appears less natural than a version
with native PDDL object creation.

Example 7.5 Under standard PDDL syntax, the action schema from Exam-
ple 7.4 is written as

(:action buy

:parameters (?L ?T)

:precondition (and (headquarters ?L)

(not (bought ?T)))

:effect (and (bought ?T)

(at ?T ?L)))

where bought is a new predicate necessary to track which trucks have already
been bought. The action has a new parameter ?T, and all (potentially buyable)
trucks need to be declared in advance. If several trucks can instantiate ?T,
this leads to a combinatorial explosion, although all successor states would be
symmetric.

7.3 decidability results

Planning with object creation is undecidable. We can use our formal-
ism to decide if a Turing Machine accepts a given input. The proof
relies on the usual technique of expanding the tape of the Turing
Machine on demand (cf. Reiter 2001, Hoffmann et al. 2009).

We first introduce the necessary notation for TMs.

Definition 7.1 (Turing Machine) A Turing Machine (TM) is given by a
tuple M = ⟨Q, Σ, δ, q0, qaccept⟩, where

• Q is a finite set of states;

• Σ is a finite set of symbols, called the input alphabet;

• δ : (Q \ {qaccept})× (Σ ∪ {□}) → Q× (Σ ∪ {□})× {L, R} is the
transition function;

• q0 ∈ Q is the start state;

• qaccept ∈ Q is the accept state.

The machine has a head that can move left (L) and right (R), and a working
tape. We assume the tape is infinite to the right, but not to the left. Given an
input x ∈ Σ∗, the tape starts with x written on its |x| left-most cells. The
special symbol □ (which is not contained in Σ) is on all the other (infinitely
many) cells, denoting that they are empty. The head of the machine starts at
the left-most cell (i.e., the first symbol of x).

A configuration of the TM is described by the current position of its head,
its current state, and the current content of the tape.

Theorem 1 ObjCreation-PlanEx is undecidable.

126 planning with object creation

Proof. We reduce the problem of deciding whether a given TM M
accepts a given input x to the problem of deciding if there is a plan
for Π.

We use the following predicates for Π:

• state(q) encodes that the TM is currently in state q;

• transition(q1, s1, q2, s2, d) encodes that δ(q1, s1) = (q2, s2, d), i.e.,
from state q1 when reading s1 there is a transition that changes
state to q2, writes s2, and moves the head in direction d;

• head(c) indicates that the head is at cell c;

• next(c1, c2) indicates that c2 is immediately to the right of c1 in
the tape;

• right-limit(c) indicates that cell c is the current right-most cell;
and

• symbol(c, s) encodes that cell c has the symbol s written in it.

We also use the following constant symbols:

• □ encodes the blank symbol;

• s1, . . . , sn encode the symbols of the input alphabet;

• c1, . . . , cn encode the first n cells of our TM, for an input word x
with |x| = n;

• L and R encode the left and the right directions; and

• qaccept encodes the accepting state of same name.

Our task has the following action schemas:

(i) read a symbol at cell c and move the head to the left;

(ii) read a symbol at cell c and move the head to the right, to a cell
that has been reached before or is in the input; and

(iii) read a symbol at cell c and move the head to the right, to a fresh
cell, while expanding the tape.

Action schema (i) is denoted by aleft. It has the action parame-
ters params(aleft) = {Q1, Q2, S1, S2, C1, C2} and the fresh variables
fresh(aleft) = ∅. We define the precondition pre(aleft) as

pre(aleft) :={state(Q1), transition(Q1, S1, Q2, S2, L),

head(C1), symbol(C1, S1), next(C2, C1)}.

The add list add(aleft) and the delete list del(aleft) are defined as

add(aleft) :={state(Q2), symbol(C1, S2), head(C2)}
del(aleft) :={state(Q1), symbol(C1, S1), head(C1)}.

7.3 decidability results 127

Action schema (ii) is denoted by aright. Its action parameters are
params(aright) = {Q1, Q2, S1, S2, C1, C2}, and its fresh variables are de-
fined as fresh(aright) = ∅. The precondition pre(aright) is defined as
follows:

pre(aright) :={state(Q1), transition(Q1, S1, Q2, S2, R),

head(C1), symbol(C1, S1), next(C1, C2)}.

The add list add(aright) and the delete list del(aright) are defined as

add(aright) :={state(Q2), symbol(C1, S2), head(C2)}
del(aright) :={state(Q1), symbol(C1, S1), head(C1)}.

Finally, we detail action schema (iii), denote by aright-create. It has the
action parameters params(aright-create) = {Q1, Q2, S1, S2, C1} and the
fresh variables fresh(aright-create) = {C2}. We define the precondition
pre(aright-create) as

pre(aright-create) :={state(Q1), transition(Q1, S1, Q2, S2, R),

head(C1), symbol(C1, S1), right-limit(C1)}

and the add list add(aright-create) and the delete list del(aright-create) are
defined as follows:

add(aright-create) :={state(Q2), symbol(C1, S2), head(C2),

right-limit(C2), next(C1, C2), symbol(C2,□)}
del(aright-create) :={state(Q1), symbol(C1, S1), head(C1),

right-limit(C1)}

Action schemas aleft and aright are symmetric, but they move the
head to different directions. Action schema aright-create, on the other
hand, is similar to aright but it extends the tape to the right with the
movement of the head. This is necessary to simulate the infinite tape
to the right. This simulation created a new object representing the
fresh cell, and it initializes it with the blank symbol □.

Let x = s1, . . . , sn ∈ Σ∗ be the input word written in the first n ∈
N cells of the TM.4 In the initial state I = ⟨U I , {cI}c∈C ,P I⟩, the
interpretation of constants {cI}c∈C maps each constant c to an object
in oc ∈ U I , the interpretation P I contains

• transition(q1, s1, q2, s2, d) iff δ(q1, s1) = (q2, s2, d);

• state(q0);

• symbol(ci, si) for all 1 ≤ i ≤ n;

• next(ci, ci+1) for all 1 ≤ i < n;

4 For simplicity and without loss of generality, we ignore the special case where n = 0.

128 planning with object creation

Procedure 5 Compute plan for tasks with object creation

1: S ← ∅
2: openList← {s0}
3: while openList ̸= ∅ do
4: s← openList.Extract()
5: if s |= G then return plan

6: for all a ∈ A do
7: for all σs,a(a) such that s |= σs,a(pre(a)) do
8: openList← openList∪ {succ(s, σs,a(a))}
9: return unsolvable

• right-limit(cn); and

• head(c1).

The universe U I contains all objects mentioned in P I and all objects
mapped to by constants. The goal is defined as {state(qaccept)}.

The initial state of our task exactly encodes the initial configuration
of M in input x: the head starts at the first cell, the state is the initial
state q0, and the input is encoded in the first cells of the tape. Observ-
ing the action schemas more closely, we can see that any reachable
state s has exactly one q such that state(q) ∈ P s and one c such that
head(c) ∈ P s, because the effect of actions never add such atoms with-
out deleting the previous one. Moreover, every cell c has exactly one
symbol s such that symbol(c, s) ∈ P s. This means that every reachable
state of the planning task encodes exactly one position for the head,
one state of the TM as the current state, and assigns exactly one symbol
to each one of the (finitely many) cells in the state. This is equivalent
to a configuration of the TM. Thus, we have a correspondence between
states of the planning task and configurations. As our initial state
is the initial configuration of the TM, and the actions simulate the
possible transitions between configurations of the TM, each reach-
able state represents a configuration that is reachable from the initial
configuration. Therefore, task Π can simulate M precisely. If there
exists a plan for Π, it can be converted into an accepting sequence
of transitions of M. Conversely, if there is an accepting sequence of
transitions, it corresponds to a plan of Π. □

Theorem 1 shows that planning with object creation is undecidable
in general. However, when plans exist we can still compute them. In
other words, ObjCreation-PlanEx is semi-decidable.

First, consider Procedure 5. It shows a general state-space search
(without duplicate elimination). It works just the same for tasks with
object creation. If openList behaves as a FIFO, then Procedure 5 is a
breadth-first search. Note that although the state space is infinite, we
are searching for a finitely long path in a finitely branching state space.
For such scenarios, breadth-first search is semi-complete because it

7.3 decidability results 129

considers all (finitely many) paths of length k before considering any
longer path. So if a solution exists, it is found after a finite computation.
This implies the following result:

Theorem 2 Procedure 5 finds a plan in finite time for any solvable planning
task with object creation.

Together with Theorem 1, this leads to the following theorem:

Theorem 3 ObjCreation-PlanEx is semi-decidable.

Procedure 5 can also be extended to accommodate heuristic esti-
mates or other optimizations.

If we are interested in plans of bounded length, the problem is
decidable. To see this, we can again run breadth-first search, keeping
track of the length of generated paths and rejecting the input as soon
as we exceed the given bound k.

Theorem 4 ObjCreation-PlanLen is decidable.

Delete-Free Planning with Object Creation

We now present a special case of planning with object creation: delete-
free planning. A planning task with object creation is called delete-free
if all its action schemas have empty delete lists. This is analogous to
our definition for planning tasks without object creation. In classical
planning, delete-free tasks are important because they are easier to
solve (Chapter 2), so they can be used to compute heuristic values
(Chapter 4) and other properties (e.g., Porteous et al., 2001).

Unfortunately, delete-free planning with object creation is also un-
decidable. We show this using a reduction from Datalog± (Calì et al.,
2010), defined next.

A Datalog± program D± = ⟨F ,R⟩ is a Datalog program where F is Datalog±

the set of facts and R is the set of rules. In Datalog±, rules are allowed
to have existentially quantified variables in their head. More formally,
a rule r ∈ R in a Datalog± program is either a Datalog rule (as in
Chapter 2) or of the form

∃Y q(X, Y)← p1(X1), . . . , pn(Xn).

where X ⊆ ⋃n
i=1 vars(Xi) and Y ∩ (

⋃n
i=1 vars(Xi)) = ∅. The existential

quantification in the head ranges over an infinite universal domain Dom. universal domain

We extend our notation from Datalog to Datalog± programs as
follows: the set body(r) of atoms is the body of the rule; head(r) is the
head of the rule; given r ∈ R, free(r) denotes the set of free variables
occurring in body(r). Note that head(r) is not an atom (as for the case
of Datalog). If r has an existential quantification, the quantifier is also
in head(r).

130 planning with object creation

A rule r ∈ R can be grounded by replacing the free variables in
free(r) with elements from Dom. Let Ground(r) be the (possibly infinite)
set of all groundings of a rule r ∈ R, and let

Ground(D±) =
⋃

r∈R
Ground(r).

An interpretation I satisfies the ground rule r in Ground(D±) if body(r)
is true under I . An interpretation is a model if I |= head(r), for every
r ∈ Ground(D±) that is satisfied by I . Note that this is analogous
to the Datalog case, except that the grounding of the rules maps the
free variables (but not the existentially quantified ones) to an infinite
universal domain Dom. This universal domain contains the set C of
constants occurring in atoms of F , i.e., C ⊆ Dom.

Datalog± captures the notion of value invention in logic program-
ming (Cabibbo, 1998). The key idea is that the existentially quanti-
fied variables Y might be instantiated with new constants (similar to
Skolem constants), not occurring in F .

In contrast to Datalog, Datalog± programs do not have a unique
minimal model. Note also that models can be infinite.

Example 7.6 Consider the following Datalog± program D± = ⟨F ,R⟩:

next(0, 1).

∃Z next(Y, Z)← next(X, Y).

The following infinite interpretation is a model of D±:

I1 = {next(0, 1), next(1, 2), next(2, 3), next(3, 4) . . . }.

But so is the following:

I2 = {next(0, 1), next(1, 2), next(2, 4), next(4, 8), . . . }.

The precise semantics of Datalog± is defined according to a chaseDatalog±

chase (Aho et al., 1979; Maier et al., 1979). Here, we consider the oblivious
chase procedure (Calì et al., 2013). We refer to both the procedure and
its output as “chase”. Let D be a set of ground atoms, called a database,
and let DomD ⊆ Dom be the set of constants occurring in some atom in
D. A rule r is obliviously applicable to D iff there exists a substitutionobliviously

applicable function δ : free(r) → DomD such that δ(body(r)) ⊆ D. Assume r is a
rule that is obliviously applicable to D using a substitution function δ.
The extension δ′ of δ maps each existentially quantified variable y ∈ Yextension

in head(r) to a fresh element δ(y) ∈ Dom \ DomD.
The chase procedure is similar to the seminaive evaluation algorithm

(Chapter 2). It iteratively checks which new atoms can be reached
until a fixpoint is achieved — if such a fixpoint exists. LetM0 := F ,
and define Mi as the set of facts reached at the i-th iteration. At
iteration i, we use D =

⋃i−1
j=0Mj as our database, and the procedure

7.3 decidability results 131

checks which rules are obliviously applicable to D. To avoid duplicates,
for each obliviously applicable rule r with substitution function δ,
the chase procedure enforces that δ(body(r)) ∩Mi−1 ̸= ∅. In words,
at iteration i, the chase “fires” all substitutions that are obliviously
applicable to the current database D and that use at least one atom
from the previous iterationMi−1. Moreover, δ′(head(r)) is added to
Mi for every obliviously applicable rule r with substitution function
δ and extension δ′ used at iteration i. (Note that there are infinitely
many different extensions δ′ for one fixed δ, but we assume that the
algorithm picks one arbitrarily, as they are all symmetric with respect
to the names chosen for the new constants.)

It is important to observe an important feature of the oblivious chase:
the extension δ′ of a substitution function δ always maps existentially
quantified variables to elements not occurring in the current database
D, i.e., not in DomD. However, D could already have an atom satisfying
the head. For example, consider the following example:

p(0).

∃Y p(Y)← p(X).

Initially, the chase sets D =M0 = F = {p(0)}. On the first iteration,
the single rule can be unified with the substitution function δ(X) = 0,
and the extension δ′(Y) = 1. But there is already an element that
satisfies the head of the rule: Y 7→ 0 satisfies the head as p(0) is in the
database D, so we would not need another atom. However, the chase
is oblivious to this fact (and hence its name).5

The chase is not guaranteed to terminate.6 For example, the chase
runs forever in the program of Example 7.6. But we can still consider
its results in the limit. We then define:

chase(F ,R) =
∞⋃

i=0

Mi

Deciding if a ground atom q(c1, . . . , cn) ∈ chase(F ,R) is undecid-
able (Calì et al., 2013). Without loss of generality, we assume that
c1, . . . , cn ∈ DomF .

We reduce the problem of checking if q(c1, . . . , cn) ∈ chase(F ,R)
to the plan existence problem for delete-free planning tasks with object
creation.

Theorem 5 DeleteFree-ObjCreation-PlanEx is undecidable.

Before diving into the proof of Theorem 5, we introduce a few useful
lemmas.

5 There are other variants of the chase algorithm, such as the restricted chase (Calì
et al., 2013), that do not have this property. For our purposes, the oblivious chase is
enough while still being simpler than the restricted one.

6 This is true also for the restricted chase.

132 planning with object creation

Assume that π+ is a plan for a delete-free planning task with object
creation Π+. Assume also that π+ contains two ground actions σs1,a(a)
and σs2,a(a) such that

σs1,a(v) = σs2,a(v), for all v ∈ params(a). (7.1)

Ground actions σs1,a(a) and σs2,a(a) are called redundant actions. If weredundant actions

have redundant actions in π+, we can find a new plan π̂+ where only
the first of these redundant actions occur, and |π̂+| < |π+|.

Lemma 6 Let π+ be a plan for a delete-free planning task with object
creation Π+ containing two redundant actions σs1,a(a) and σs2,a(a), where
σs1,a(a) occurs first. Then, there exists a plan π̂+ where σs2,a(a) does not
occur and |π̂+| < |π+|.

Proof. First, assume the simple case when fresh(a) = ∅. This implies
that

σs1,a(add(a)) = σs2,a(add(a)).

As we are dealing with delete-free tasks, once we add an atom p to a
state s, all atoms reached from s will contain p. Therefore, once σs1,a(a)
is applied in π+, applying σs2,a(a) does not add any new atom — they
were all added by σs1,a(a). So σs2,a(a) has no impact in π+, and simply
removing σs2,a(a) from π+ yields a plan π̂+.

Now, consider the case where fresh(a) ̸= ∅. This means that the
add lists are different, because the fresh variables of a must always be
instantiated with different objects.

Let {o1
1, . . . , o1

n} and {o2
1, . . . , o2

n}, for n ≥ 1, be the new objects
introduced by σs1,a(a) and σs2,a(a) respectively. We claim that whenever
we use an object o2

i in π+, we can use o1
i instead, for 1 ≤ i ≤ n.

When σs2,a(a) is applied, for any atom p(o1, . . . , o2
i , . . . , om) added

by σs2,a(a) there is already an atom p(o1, . . . , o1
i , . . . , om) in the state s2,

which was added by σs1,a(a) (which was applied before by definition).
So in any subsequent action σs′,a′(a′), for which p(o1, . . . , o2

i , . . . , om) ∈
σs′,a′(pre(a′)), the action is still applicable in s′ if we replace o2

i with o1
i ,

since we do not have negated atoms in the precondition.
We can then obtain a plan π̂+ by removing σs2,a(a) from π+, and

replacing every occurrence of the objects o2
1, . . . , o2

n created by σs2,a(a)
with their respective objects o1

1, . . . , o1
n created by σs1,a(a). As just ar-

gued, the preconditions of all actions using o2
i are still applicable

when replacing o2
i by o1

i . Moreover, as the goal only mentions con-
stants appearing in the initial state, its reachability is not affected
by the removal of o2

i . Last, as σs2,a(a) occurs after σs1,a(a) in π+ (by
assumption), the new plan is still applicable, since the first action is
either σs1,a(a) or another action which were not modified nor removed.

As the new plan π̂+ has one action fewer than π+, it follows directly
that |π̂+| < |π+|.

□
A plan without redundant actions is called a simple plan.simple plan

7.3 decidability results 133

Lemma 7 If a delete-free planning task with object creation Π+ is solvable,
then it has a simple plan.

Proof. Given a plan π+ for Π+, we can remove redundant actions one
by one as described in Lemma 6, until none is left.

Note that as we remove actions, other actions might become re-
dundant. However, as our first plan is finite, we only remove a finite
number of actions from it. □

We are now ready to prove Theorem 5.

Proof of Theorem 5. Given a Datalog± program D± = ⟨F ,R⟩ and a
ground atom q(c1, . . . , cn) — where c1, . . . , cn ∈ DomF —, we show
how to reduce the problem of checking if q(c1, . . . , cn) ∈ chase(F ,R)
to a delete-free planning task with object creation Π+.

Π+ has the same predicate symbols as D. The set C of constants in
Π+ contains all constants occurring in F .

Our task has one action schema for each r ∈ R. Given a rule r in
the form

∃Y q(X, Y)← p1(X1), . . . , pn(Xn).

we introduce an action schema ar to Π+ where

params(ar) = {Xi | Xi ∈ X}
fresh(ar) = {Yi | Yi ∈ Y}

pre(ar) = {pi(Xi) | pi(Xi) ∈ body(r)}
add(ar) = {q(X, Y)}.

In the initial state I = ⟨U I , {cI}c∈C , {P I}⟩, the interpretation of con-
stants {cI}c∈C maps each constant c to an object oc ∈ U I , and the
interpretation P I contains p(oc1 , . . . , ocn) iff p(c1, . . . , cn) ∈ F . The
universe U I contains all objects mentioned in P I .

The goal G is the singleton set {q(oc1 , . . . , ocn)}.
There is an one-to-one correspondence between actions and rules,

and the initial state corresponds to the initial set I of facts F . Assume
action schema a corresponds to a rule r. Then there exists a ground
action σs,a(s) applicable in a given state s iff there also exists a substi-
tution function δ(free(r)) such that r is obliviously applicable to the
database D = s. It is easy to construct δ from σs,a: let δ(X) = σs,a(X)

for all X ∈ free(r). Since free(r) = params(a), this is well-defined. More-
over, we can compute the extension δ′ as follows: δ′(Y) = σs,a(Y) for
all Y ∈ fresh(a). Once more, this works because fresh(a) corresponds to
the existentially quantified variables in r. Thus, applying an action to
a state is equivalent to an oblivious application of a rule in the chase,
where the database corresponds to the state. The other way around
(from obliviously applicable rules to ground actions) is analogous.

If there exists a sequence of ground rules that reaches q(c1, . . . , cn)

in the chase, then this sequence can be transformed into a sequence of

134 planning with object creation

ground actions, which corresponds to a plan, as the goal of our task is
to reach q(c1, . . . , cn).

And if there exists a plan for Π+, then it can be transformed into
a series of rules corresponding to a derivation (see Chapter 4) of
q(oc1 , . . . , ocn). From Lemma 7 we know that if Π+ is solvable, it has
a simple plan, and we can transform any (non-simple) plan into a
simple one. So it is sufficient to consider only simple plans, which
are equivalent to derivations. As our initial state exactly encodes the
initial set of facts of D±, the goal atom q(oc1 , . . . , ocn) is only reachable
in Π+ (i.e., the task is solvable) iff q(c1, . . . , cn) ∈ chase(F ,R). □

This undecidability result might be surprising at first, as the similar
problem of planning with infinitely many constants is EXPTIME-
complete when restricted to the delete-free case and finite initial states
(Erol et al., 1995). This is another extension of our original formalism.
In contrast to object creation, planning with infinitely many constants
already assumes the existence of an infinite number of objects at the
initial state. If the initial state also has infinitely many atoms, then the
plan existence problem is semi-decidable. However, Erol et al. (1991)
proved that when initial states are finite, the problem is decidable.
This implies that the undecidability in our formalism comes from the
creation of fresh names on demand, and not only from the infinite
state space.

Theorem 5 brings an indirect problem: computing heuristic based
on relaxed plans (e.g., Chapter 4) is undecidable for tasks with object
creation. Therefore, to compute good heuristics, we cannot rely on
delete-relaxation alone. One alternative is to apply for additional
relaxations (e.g., Lauer et al., 2021). Additionally, there are several
decidable fragments based on the structure of the rules of Datalog±

programs (Calì et al., 2013; Calì et al., 2010).

7.4 overall procedure in practice

There are still some details missing for a practical implementation
of Procedure 5. For example, we want to quickly generate successor
states, and also to define how to come up with fresh objects during
object creation.

To generate successor states, we need to find all variable assign-
ments for the action parameters leading to applicable actions. Let s
be a state and a an action schema. We can find all ground actions
σ1

s,a(a), . . . , σm
s,a(a) by computing all σi

s,a such that s |= σi
s,a(pre(a)). As

states are finite, solving this problem is decidable.
Now assume that p(X) ∈ add(a), where X is a fresh variable. At

a given state s, we need to instantiate X to a fresh object that is not
in U s. There are infinitely many ways to do so. The new object could
be assigned to a natural number, or it could be an arbitrarily long
sequence of characters, like aaaa, or anything else that is not in U s.

7.4 overall procedure in practice 135

But all these choices are just names assigned to the new object, and
they do not influence the semantics of the successor state. In other
words, they are just syntactic. Any such choice of name is isomorphic
to the other ones. Choosing one well-defined method to come up with
names is sufficient. We call a function that chooses the next fresh object
in a given state a choice function. choice function

One of the simplest ways is to map every object o ∈ U I to an index
id(o) = i for i ∈ N. Whenever we need a fresh object in a state s,
we compute the minimum j ∈ N not assigned to any object in U s.
We then introduce a new object named j and set id(j) = j. In other
words, new objects are identified by the minimum unused index in
the current state.7 A successor state keeps the same mapping as its
parent state, besides the newly created objects. For example, if our
state s has three objects, we can map them to indices 1, 2, and 3. If the
action σs,a adds a new object, this object can be assigned to index 4.
The successor state succ(s, σs,a) still maps the three original objects to
1, 2, and 3, but it also maps the fourth object to 4.

This brings us to yet another efficiency concern. Assume that we
have a state s and two actions a and b. Let us also assume that a
and b have the trivially true precondition pre(a) = pre(b) = ∅. More-
over, add(a) := {p(V)}, while add(b) := {q(V)}, and V is a fresh
variable in both actions. The sequences ⟨σs,a(a), σsucc(s,σ,a),b(b)⟩ and
⟨σs,b(b), σsucc(s,σ,b,a)(a)⟩ lead to two different states, but both are seman-
tically equivalent: they only differ by the names used to identify the
created objects. The two resulting states are isomorphic, and keeping
only one of them is sufficient.

State-space search algorithms usually rely on duplicate state de-
tection, but this is not enough here because we want to detect all
isomorphic states. Unfortunately, no polynomial-time algorithms are isomorphic states

known for this (Grohe and Schweitzer, 2020).
This problem is similar to the one faced by orbit space search

algorithms (Alkhazraji et al., 2014; Domshlak et al., 2015). In orbit
space, search nodes correspond to equivalence classes of states instead
of individual states. Two states are considered equivalent if they are
detected to be symmetric. This symmetry detection is usually done
based on canonical states. canonical states

Ideally, a canonical state would be a unique representative of an
equivalence class. During search, it is sufficient to store the canonical
state for each encountered equivalence class and then use standard
duplicate elimination techniques. The efficiency of canonical state
computation is a crucial part of the performance of orbit space search
planners. In practice, computing true canonical representatives is con-
sidered to be too expensive, and therefore canonical states are approx-

7 This requires keeping track of the id-value for created objects as we process the
effect of an action. For a choice function where this is not necessary, see Corrêa et al.
(2024b).

136 planning with object creation

imated by a greedy procedure. This leads to some lost opportunities
for detecting equivalence, but does not affect correctness.

In planning with object creation, one might expect symmetrical
states to often occur, as the different names given to new objects
are another source of symmetry. We can tackle this problem as in
orbit search, by using (exact or approximate) canonical states for each
equivalence class.

Example 7.7 Let us say we have two states s1 and s2, and a, b, c and d are
objects created during search:

U s1 = {a, b, c}, P s1 = {p(a), p(c), q(a), q(b)},
U s2 = {b, c, d}, P s2 = {p(b), p(d), q(b), q(c)}.

These states are equivalent via the object mapping {a 7→ b, b 7→ c, c 7→ d}.
In this case, this can be already detected by a simple algorithm approximating
canonical representatives by mapping each object to its index in a lexico-
graphical order: for s1 we map {a 7→ 1, b 7→ 2, c 7→ 3}, and in s2 we map
{b 7→ 1, c 7→ 2, d 7→ 3}. In both cases, we end up with the same state s′,
showing equivalence:

U s′ = {1, 2, 3}, P s′ = {p(1), p(3), q(1), q(2)}.

7.5 implementation

We extended Powerlifted to support object creation. There a few open
design choices that we discuss next.

The successor generators introduced in Chapter 3 are sufficient to
compute the applicable ground actions. Recall that the precondition of
an action a can be interpreted as a conjunctive query. The query is al-
ways answered with the tuples in the current state, which corresponds
to the interpretation of predicates in our state. As the interpretation of
predicates always refers to objects in the universe (by definition), the
conjunctive query can be answered as usual. If we answer this query
over a state s, every tuple in the answer corresponds to a function σ

mapping params(a) to U s such that σs,a(a) is applicable. We can still
exploit the same structural properties (e.g., acyclicity) in this case.

We use the choice function mapping objects to natural numbers
as described above (i.e., a new object o is mapped to the smallest
natural number j such that there is no o′ where id(o′) = j). We did
not implement any isomorphism check between states, and we rely on
syntactic duplicate detection. We leave more sophisticated techniques
based on (approximate) canonical representatives as future work.

To improve the search, we modified the lifted width search from
Chapter 5. Remember that a best-first width search (BFWS) (Lipovet-
zky and Geffner, 2017) uses a novelty measure to choose which
states to expand. The novelty w(s) of a state s is the size of the

7.6 experimental results 137

smallest non-empty set of ground atoms Q such that s is the first
state visited where s |= Q. A more informed version of novelty is
w⟨ f1(s),..., fn(s)⟩, which is computed only considering tuples in states s′

where f1(s) = f1(s′), . . . , fn(s) = fn(s′). We implemented BFWS with
w⟨#g⟩(s), where #g is the number of atoms in the goal satisfied in s.
We only compute w⟨#g⟩ up to pairs (i.e., k = 2). If there is no new pair
in s, then w⟨#g⟩(s) = 3.

Novelty measures do not seem to fit with object creation: introducing
a fresh object makes the state have a novelty of 1, so BFWS always
prioritizes states that create objects. In domains where the number of
created of objects is unbounded, this could lead to an infinite sequence
of actions. To solve this, our implementation only consider tuples of
atoms that do not mention new objects. In other words, we compute
the novelty of a state over those tuples that only mention objects in U I .
However, this has the opposite effect: new objects do not account for
the novelty of a state, so they do not add any information to the BFWS.
What can happen in this case is that BFWS finds plans creating the
minimum number of objects necessary. As we see in our experimental
results next, this does indeed often happen in our benchmarks. Yet,
this modified BFWS still improves our planner.

It would be interesting to extend our delete-relaxation heuristics
(Chapter 4) to object creation, but this is not a simple task and requires
developing its own theory. As argued before, since delete-free planning
with object creation is undecidable, we need to either exploit decidable
fragments or to find further relaxations that yield decidable problems.

7.6 experimental results

For our experiments, we introduced new domains that contain object
creation. So in this chapter, we do not rely on the IPC and HTG sets
used so far. Instead, we use four new PDDL domains with object cre-
ation as our benchmark. Two of them are based on previously existing
domains that encode object creation by listing all possible objects at the
initial state and using auxiliary predicates to simulate object creation.
This made it necessary in the original PDDL to introduce a bound
on the number of objects that can be created and then experiment
with different bounds to deal with tasks that are wrongly considered
unsolvable because the number of objects is too low.

For each domain, we have two versions:

• one using our new PDDL extension, called the extended version; extended version

• one where all potential objects are declared in the initial state,
called the standard version. standard version

This comparison is imperfect because only the extended version cap-
tures the underlying problem faithfully, but it allows us to compare
our planner using object creation with existing planning systems.

138 planning with object creation

Cluster Management
cluster management In this new domain, we must produce a
set of files. These files are produced by executing scripts on certain
inputs. For example, executing script S with input I1 might output O1,
and executing S with I2 might output O2. Our benchmark contains
instances with up to 100 files and 20 different scripts. We also have
a cluster with multiple CPUs, where we can load and execute these
scripts with the corresponding files. The actions are to load a file or
script in a CPU, to execute a script, to save a file into memory, and
to add a new CPU to the cluster. So if a script must be used multiple
times (with different inputs to produce different outputs), it might be
preferable to load it only once in one of the CPUs and leave it there.
The problem in this domain is to find the optimal amount of CPUs to
obtain a certain set of goal files as quick as possible. We can add new
CPUs to our cluster using an action that creates a new CPU object. In
the standard version, we pre-declare 5 CPUs.

Commutative Rings
commutative rings This domain was introduced by Petrov and
Muise (2023). A task in this domain is a statement in elementary
algebra. A plan is a proof for this statement. The domain focuses
on tasks related to commutative rings. One task, for example, is to
prove that for all commutative rings R, a × 0 = 0 for every a ∈ R.
Action schemas represent the axioms of commutative rings, equality
operations, definitions of products, sums, and inverses. Object creation
can be used to model existential axioms and build complex expressions.
For instance, given a commutative ring R, for any a, b ∈ R there exists
an element a + b ∈ R. So we can construct a new object c and define
c = a + b to be used later. In the original domain, Petrov and Muise
(2023) introduce a fixed number of undeclared variables in the initial
state. However, this makes the task harder to ground, while also
bounding the number of proofs the planner can explore. We used the
original tasks of this domain, but compiled away conditional effects,
which are not supported by Powerlifted.

Logistics Company
logistics company This is a new domain, and it is similar to the
running example in our paper. We have a set of connected locations
and a set of packages that must be delivered to specific locations.
Our company has headquarters in a few locations, and we can buy
trucks that appear at one of these headquarters. Actions are to move
a truck, (un)load packages, and buy a new truck. The challenge is
to find a good balance of how many trucks to buy to deliver all
packages efficiently. While all tasks are solvable with one single truck,
it might be that using multiple trucks decreases the plan length. In
our instances, the number of locations varies between 3 and 1 000, the
number of packages from 1 to 100, and the number of headquarters
from 1 to 20. In the standard version, the number of declared trucks
at the initial state is twice the number of headquarters in the task.

7.6 experimental results 139

PWL++ PWL FD

B W B W B W

Cluster Management (20) 3 9 2 14 5 12

Commutative Ring (15) 2 11 9 14 10 12

Logistics Company (20) 3 19 5 8 5 6

Settlers (20) 3 8 3 6 3 5

Total (75) 11 47 19 42 23 35

Table 7.1: Coverage of PWL++, PWL, and FD on our benchmark. For each planner,
we tested a configuration with breadth-first search (B) and best-first
width search (W).

Settlers
settlers This domain is based on the Settlers domain used in
IPC 2002 (Long and Fox, 2003). The domain focuses on resource
management. Products and factories must be built from raw materials
and used in the manufacturing or transportation of further materials.
The objective is to construct a variety of building types at various
specified locations. The original domain is numeric: the quantity of
resources at each location is defined by numeric fluents. But these
fluents are discrete and their maximum values are always bounded,
so one can emulate them using predicates to encode a successor
relation over the natural numbers. Long and Fox (2003) mention that
this domain highlights the necessity of object creation during plan
execution. In the standard version, all objects had to be declared in
advance, which made grounding harder and made the modeling more
convoluted. We removed “maritime” objects – wharves, docks, ships –
in our version, because the original instances were too challenging for
all planners.

Results

We ran Powerlifted on both versions of our benchmarks (standard
and extended versions). Powerlifted using the standard versions is
denoted as PWL, and using the extended versions as PWL++. For each,
we tested two configurations: a breadth-first search (BFS), and the
BFWS as explained in the previous section.

Table 7.1 shows the coverage of all methods in our benchmark.
PWL++ outperforms PWL when using BFWS, but it has lower coverage
with BFS. Using BFS, PWL++ might create too many objects. Two of the
domains (Cluster Management and Logistics Company) have actions
that create new objects and are applicable to every state. Therefore,
the branching factor increases at each layer of the search, which hurts

140 planning with object creation

104 105 106 107

104

105

106

107

uns.

uns.

PWL (lower for 15 tasks)

P
W
L

++
(l

ow
er

fo
r

1
6

ta
sk

s)

Cluster Manag.
Comm. Ring
Logistics Company
Settlers

Figure 7.1: Memory consumption using PWL and PWL++.

100 101 102 103 104 105 106

101

102

103

104

105

106

uns.

uns.

PWL (lower for 15 tasks)

P
W
L

++
(l

ow
er

fo
r

1
4

ta
sk

s)

Cluster Manag.
Comm. Ring
Logistics Company
Settlers

Figure 7.2: Expanded states using PWL and PWL++.

7.6 experimental results 141

performance. In contrast, the BFWS implementation does not consider
tuples considering newly created objects. This can be an issue with
the extended versions, as only some objects are considered when
evaluating the novelty of a state. But this is not always problematic.
In the Logistics Company domain, for example, using one truck is
already enough to solve the task so BFWS does not favor the creation
of new trucks. This increases coverage in the extended version but
also impacts plan quality. In some cases, the optimal plan had length
10, but PWL++ with BFWS only found plans with more than 100 steps.

With respect to run time and memory, there are large differences
depending on the domain. Figure 7.1 compares the memory usage for
PWL++ and PWL, both using the BFWS configuration. In a few instances
of the Commutative Rings domain, PWL++ with BFWS used almost
100 times more memory than the PWL counterpart. In this domain,
some instances in the standard version do not use any undeclared
variables. In the extended version, the planner is not aware that they
are not needed, so they are introduced multiple times. This blows up
the size of the state space, increasing the number of expansions and,
consequently, time and memory. To solve this problem it is crucial
to have heuristic estimates that can better decide when more objects
are needed. On the other hand, we observe the opposite behavior
in the Logistics company domain, where sometimes PWL with BFWS
consumes almost 100 times more memory. As mentioned before, we
can solve any problem with a single truck, so PWL++ with BFWS always
uses one truck, while PWL already has more trucks at the initial state,
so the branching factor is larger already at the initial state.

Figure 7.2 compares the number of expanded states for the same
two methods. As expected, in the domains where PWL++ consumes
more memory, it also expands more states. However, the differences
between PWL++ and PWL are not as large as we expected (as in some
instances the memory differed by a factor of almost 100).

Powerlifted has some advantages when solving tasks that are hard
to ground, but its search capabilities are not on par with ground
planners (see Part i). To compare PWL++ with a state-of-the-art heuristic
search planner, we also ran Fast Downward (Helmert, 2006) on the
standard versions. We denote Fast Downward as FD in the rest. Results
are also shown in Table 7.1.

When using BFS, FD is significantly better than PWL++ and somewhat
better than PWL. For larger problems, however, grounding becomes an
issue for FD. This can be seen when comparing FD with BFWS and
PWL++ with BFWS. Although the coverage of FD increases by almost 50%
when switching from BFS to BFWS, it is still worse than PWL++. Only in
the Cluster Management domain, FD outperforms PWL++. This is also
the only domain where all tasks can be grounded within seconds, as
the number of ground actions is low (a few thousands) even declaring
all objects in advance. In the Logistics Company domain, where several

142 planning with object creation

of the declared objects are not necessary (although helpful) grounding
becomes a major bottleneck. In this domain, FD has worse coverage
than PWL++. The same happens in the Commutative Rings domain,
even though in this domain we have at most one undeclared variable
per task — but in the grounding several actions use this object. As
noted by Petrov and Muise (2023), adding one single undeclared
variable to the initial state is already enough to make the grounding
much harder.

We also analyzed the number of expansions for each method. The
results vary with the domains. For example, PWL++ expands fewer
states than PWL and FD in the Logistics Company and Cluster Manage-
ment domains, because the search in PWL++ is guided directly to a goal
state using the minimum amount of objects. However, the plan found
by PWL++ is usually longer than the ones found by PWL and FD. In the
Settlers domain, all methods have a similar number of expansions. As
object creation is restricted in this domain (depends on the resources
available at the state), it is not so impactful in the performance.

7.7 summary

We formalized an extension of classical planning that allows for ob-
ject creation and removal during plan execution. In our formalism,
this creation happens as part of action effects. In general, planning
with object creation is semi-decidable, even if we consider common
restrictions such as delete-free planning.

Our main insight in this chapter is that lifted planners are well-
suited for object creation. We implemented support for object creation
on top of Powerlifted, and showed that, at least for our STRIPS-like
fragment, there are only a few things that needed adaptation. In our
experimental results, support for this extension caused no harm to the
planner performance. It was also on par with Fast Downward.

It would be useful to study how to efficiently identify isomorphic
states to reduce the search space. To further scale performance, one
could use more informed heuristic estimates for tasks with object
creation and have a more sophisticated integration of width-based
search with object creation.

chapter notes & history

Object creation has been considered several times as an important
feature for large-scale planning systems (Hoffmann et al., 2009; Long
and Fox, 2003; Petrov and Muise, 2023). So far, all methods trying to
solve this problem used compilations. Fuentetaja and de la Rosa (2016)
present an automatic compilation of “irrelevant objects” (i.e., objects
whose name do not specifically matter) into counters. While this is
sufficient in certain domains, it has inherent limitations. Two irrelevant

7.7 summary 143

objects can only be compiled into the same counter if they are fungible
and can be easily interchanged in plans. In our logistics company
example this is not the case, as trucks can have different properties
in a plan (e.g., each truck can be at a different location and carry a
different set of packages). Moreover, counters must be first compiled
into relations, which forces them to be bounded. Similar compilations
have been proposed to automatically encode indistinguishable objects
into counters represented by numeric variables (Riddle et al., 2016).

Edelkamp et al. (2019) encode planning with object creation as a
model checking problem. Their method seems more flexible than the
one by Fuentetaja and de la Rosa, as the creation is not restricted to
only a few objects. Edelkamp et al. also propose the idea of object
removal. However, the semantics of both object creation and removal
are not fully specified in their work.

In situation calculus (McCarthy, 1963), infinitely many objects have
already been considered (cf. Reiter, 2001), although mostly in theory. In
comparison to our work, the most relevant result in situation calculus
is the work by De Giacomo et al. (2016). They show that bounded
situation calculus – when the number of objects in tuples is bounded
– is decidable. This is essentially the same as planning with object
creation for tasks with a bounded number of objects allowed in the
interpretation of predicates at any given state. Moreover, De Giacomo
et al. also show that verification of an expressive class of first-order µ-
calculus temporal properties in bounded action theories is EXPTIME-
complete.

Our original work (Corrêa et al., 2024a) used a richer fragment than
our STRIPS-like formalism from this chapter. There, we considered
all PDDL features of classical planning — arbitrary preconditions,
universally quantified effects, conditional effects, etc. We also showed
how to implement object removal. We did not include this more power- object removal

ful fragment in the chapter, as our implementation only considered
STRIPS anyway. To the best of our knowledge, our original paper was
the first one to fully specify the complete semantics of object creation
— although Hoffmann et al. (2009) study a fragment that subsumes
STRIPS but has orthogonal features such as indirect effects. Our proof
of undecidability in the paper is equivalent to the one presented here,
and it follows the classic structure of using new objects to extend the
tape of a Turing Machine (Hoffmann et al., 2009; Reiter, 2001). The
result that delete-free planning with object creation is undecidable is a
novel contribution of this thesis. The original paper did not have any
results about delete-free tasks; however, it did have a longer discussion
about the decidability of state-bounded tasks.

Part IV

C O N C L U S I O N

8
C O N C L U S I O N

In Part i, we implemented Powerlifted, a heuristic search planner
that works directly on a lifted representation of planning tasks. We
started by studying how to generate successor states during a state-
space search and showed how to cast this problem into a conjunctive
query answering problem. Then, using insights from database theory
(Chandra and Merlin, 1977; Codd, 1970; Yannakakis, 1981), we showed
how to exploit the structure of action schemas — i.e., acyclicity — to
implement efficient successor generators.

Later, we also studied how to extract heuristics from the lifted rep-
resentation. Our study focused on delete-relaxation heuristics, and
we showed how to compute lifted versions of hFF (Hoffmann and
Nebel, 2001), hadd, and hmax (Bonet and Geffner, 2001). By reducing
our delete-relaxed task into a Datalog program, we could couple sev-
eral optimizations (e.g., annotations, rule decomposition, predicate
removal) to efficiently compute these heuristics. Additionally, we im-
plemented more recent techniques, such as BFWS (Francès et al., 2017;
Lipovetzky and Geffner, 2017), that helped us boost the performance
of Powerlifted.

Our final configuration of Powerlifted achieves state-of-the-art per-
formance among lifted planners. In tasks that are hard to ground,
Powerlifted can solve more problems than any other planner, while
still being competitive with state-of-the-art ground planners in tasks
where grounding is not so challenging.

In Part ii we translated the knowledge obtained from building
Powerlifted to the ground planning setting. We showed how to use
several techniques from Powerlifted to speed up the grounding of
planning tasks.

Using external tools such as gringo (Gebser et al., 2011) and lpopt

(Bichler et al., 2016), we created a new grounder that works in two
steps. First, we compute all relaxed reachable atoms of the task, and
then we use this set of atoms to compute the actions. While being
slower, this new technique has a wider reach than the traditional
grounding approaches in planning. However, due to its overhead,
our two-step grounder did not help much when simply considering
coverage.

147

148 conclusion

In our last endeavor, we extended the classical planning formalism
to allow object creation (Part iii). In this fragment, actions can create
fresh objects as part of their effect. This extension led us to a semi-
decidable flavor of classical planning.

However, we showed that Powerlifted — and, potentially, any lifted
planner using state space search — can easily deal with this exten-
sion. We implemented support for object creation in Powerlifted and
showed that this usually does not add any overhead. Furthermore, we
illustrated how width-based search can also be modified to support
object creation, which also helped the performance of Powerlifted in
these new domains.

open questions & future work

We now highlight some ideas for future work that were left unan-
swered by this thesis.

Treewidth Decompositions in Lifted Planning

In Chapter 6 we showed that decomposing Datalog rules using tree
decompositions (computed by lpopt) helped gringo to ground more
tasks. This occurred in the so-called simplified Datalog programs,
where action predicates have been removed. In Powerlifted, we used
the same Datalog programs to compute delete-relaxation heuristics
(Chapter 4). However, there we used the method by Helmert (2009)
to decompose the rules (equivalent to the FD++ decomposition in
Chapter 6). A possibility is to combine the insights from Chapter 6

and use lpopt’s tree decomposition within Powerlifted to compute
hadd, hFF, and hmax. We expect this to produce a similar improvement
as in the grounder.

We can also use tree decomposition in our successor generators
(Chapter 3). Recall that, for cyclic action schemas, we used a heuristic
method to avoid large intermediate results. We can replace this heuris-
tic method with a decomposition method based on tree decomposition,
as answering conjunctive queries with treewidth tw is exponential only
in tw. Moreover, Longo (2023) showed that all action schemas in the
IPC and HTG sets have very low hypertreewidth (Gottlob et al., 2002) —
never higher than 2. While hypertree decompositions were tested as a
replacement for lpopt in our grounding algorithms without much suc-
cess (Longo, 2023), they could work better for the successor generation
case.

More Refined Grounders

Our experiments on Chapter 6 also showed that, unfortunately, our
grounding via iterated solving is very close to its practical limits,

conclusion 149

as most of the unsolved tasks have a prohibitive number of action
schemas and, therefore, just storing them is impractical. A possible
way out is to refine our grounder even further, potentially adding
more steps to prune some of these actions.

A direct option is to include a backward reachability analysis phase
(Helmert, 2009). Backward reachability analysis prunes actions and
atoms that do not help find a goal state. The classic example is a
Logistics task with many packages, but where some packages are
not mentioned in the goal. In this case, there is no reason to keep
information of these packages, so atoms and actions mentioning them
can be removed. This is what backward reachability analysis does. We
can try to exploit this idea using additional rules or using a new step
in our grounder.

This seems related to the concept of magic sets (Bancilhon et al.,
1986). The idea of magic sets is to rewrite the Datalog rules so that a
bottom-up evaluation (e.g., seminaive evaluation from Chapter 2) does
not consider irrelevant facts that are generated. In practice, magic set
rewriting prunes atoms that would not be considered by a top-down
evaluation (e.g., Prolog back-chaining). This forces the evaluation to
be more focused on atoms that influence the goal, which might lead
to improvement in performance.

Delete-Relaxation Heuristics for Object Creation

We showed in Chapter 7 that delete-free planning with object creation
is semi-decidable. This is bad news for most delete-relaxation heuris-
tics, which need to compute relaxed plans in the evaluated states.
There are simple workarounds to this problem — for example, check
for relaxed plans of bounded lengths — but we might be able to do
better than this.

We can use some insights from our theoretical results to help us
come up with decidable heuristic functions. For example, we can
further relax our problem by assuming that all created objects are
homomorphic, or refine this relaxation all objects created by a same
action schema are homomorphic. In practice, this allows us to use only
one new object (in total or per action schema), and whenever we have
an object creation effect, we reuse the same object. This brings us back
into a decidable case — the total number of objects is now bounded —
while still giving us a distance estimate. This proposal is not far from
the work by Horčík et al. (2022) discussed in the notes of Chapter 4,
but here we exploit homomorphisms just for the fresh objects.

Another possibility is to look for decidable fragments of delete-
free planning with object creation. One possible way is to first look
for cases where atom containment in the chase is decidable, as we
demonstrated that delete-free planning with object creation and the
chase procedure are closely related. There is an extensive body of work

150 conclusion

introducing fragments of Datalog± for which the chase is guaranteed
to terminate (Calì et al., 2013; Calì et al., 2010). These fragments are
usually based on the structure of the rules (e.g., guarded or linear
rules). It would be an interesting first step to study if, when we encode
our planning tasks as Datalog± programs, these programs fall into the
decidable cases. If so, we can try to adapt the algorithms to compute
models for Datalog± programs to extract heuristics, similarly to what
we did in Chapter 4.

A P P E N D I X

151

A
C O M P U TAT I O N A L C O M P L E X I T Y R E D U X

We present the necessary concepts in computational complexity next.
We assume familiarity with general notions of theoretical computer
science, such as Turing Machines (TMs), nondeterminism, and asymp-
totic functions. For a more detailed overview of complexity theory and
related concepts, we recommend the textbook by Wigderson (2019).

To study how hard a problem is, we usually rely on its decision
problem: a yes-or-no version of it. For example, “Given a Boolean formula decision problem

ϕ, is ϕ satisfiable?” and “Given a graph G, is G connected?” are decision
problems. A particular formula ϕ or a particular graph G are called
instances. We say that an algorithm correctly decides or solves a decision
problem if it correctly outputs yes or no for any given instances.

Example A.1 The decision problem SAT is defined as

Input: A Boolean formula ϕ.
Question: Is ϕ satisfiable?

The concrete input formula ϕ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x3 ∨ x4)∧ (x3 ∨ x4)

is an instance of SAT, and the following (nondeterministic) algorithm solves
the problem:

1. Guess an assignment of true or false to each variable in ϕ;

2. Check if ϕ is satisfied by the assignment or not. If it is, return yes;
otherwise, return no.

Decision problems are split in different classes, based on the amount
of resources an algorithm needs to solve an instance of this problem.
We are particularly interested in two specific resources: time and
memory. An algorithm for a given decision problem runs in polynomial
time if it solves any instance of the corresponding decision problem polynomial time

in O(nc) steps, where c is some real-valued constant and n is the
input size of the instance. This input size is simply the number of bits
necessary to represent the instance in the input tape of a TM. We
assume reasonable compact encodings of instances, and we denote
the input size of an instance P as ∥P∥.

Analogously, a problem runs in polynomial space if, for any given polynomial space

153

154 computational complexity redux

instance, it solves the problem using at most O(nc) memory cells.1

More generally, a problem is said solvable in f (n) time (resp. space),
if there is an algorithm that solves it in O(f (n)) steps (resp. cells).

Decision problems can be classified in different classes by their time
complexity. The class P contains all problems for which a polynomial-time complexity

time deterministic algorithm exists, while the class NP contains all
problems for which a polynomial-time nondeterministic algorithm ex-
ists. It is clear that P ⊆ NP, but we do not know if the inclusion is
proper. Although most researchers believe that the inclusion is indeed
proper (i.e., P ⊊ NP) the question has been open for decades (Cook,
1971).

Example A.2 SAT is in NP, as there is a polynomial-time nondeterministic
algorithm for it (Example A.1). We do not know if SAT is in P.

Similarly, the class EXPTIME contains all problems for which an
exponential-time deterministic algorithm exists; the class NEXPTIMEexponential time

corresponds to its nondeterministic counterpart. As for P and NP,
we know that EXPTIME ⊆ NEXPTIME, but we do not know if the
inclusion is proper.

Example A.3 Let Chess be the problem of deciding whether the White pieces
have a winning strategy in a given (generalized) chess position on an n× n
board. Chess is in EXPTIME (Fraenkel and Lichtenstein, 1981).

Problems can also be categorized according to their space complex-
ity: PSPACE contains all problems solvable by a deterministic algo-space complexity

rithm running in polynomial space; EXPSPACE contains all problems
solvable by a deterministic algorithms running in exponential space.
But what about their nondeterministic counterparts, NPSPACE and
NEXPSPACE? Perhaps surprisingly, Savitch (1970) showed that non-Savitch’s theorem

determinism does not add power to PSPACE and EXPSPACE — i.e.,
PSPACE = NPSPACE and EXPSPACE = NEXPSPACE.2 However,
we do not know much about the relations between space complexity
and time complexity classes.

Our current understanding about all these classes is the following:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE.

We do know, however, that P ⊂ EXPTIME (Hartmanis and Stearns,
1965) and NP ⊂ NEXPTIME (Cook, 1973). This means that there
are problems solvable in (non)deterministic exponential time that
cannot be solved in (non)deterministic polynomial time. The open-
questions related to P, NP, EXPTIME, and NEXPTIME then ask if

1 Ignoring the memory used to represent the input. This is not important for the
specific case of polynomial-space algorithms, but it becomes relevant once we restrict
the algorithms to use logarithmic space, for example.

2 Savitch’s theorem is actually stronger than this statement but these two results are
enough for this thesis.

computational complexity redux 155

nondeterminism adds any computational power with respect to run
time. Moreover, Stearns et al. (1965) show that PSPACE ⊂ EXPSPACE.

For any class C, a problem is said C-hard if it is at least as hard as hardness

any other problem in C. Proving hardness of a problem P is usually
done via reduction: starting from a known C-hard problem P′, we show
how to reduce in polynomial time any instance of P′ to an instance of
P, such that all yes/no instances are mapped accordingly. Intuitively, if
we can solve P efficiently, we can also solve P′ efficiently by reducing
its instances to instances of P and then solving them. A problem is
said complete for C if it is both in C and C-hard. completeness

Example A.4 SAT is NP-complete (Cook, 1971).

If there exists an efficient algorithm to solve SAT, then every problem
in NP can be solved efficiently by first reducing it to SAT and then
calling the previous efficient algorithm.

B I B L I O G R A P H Y

Mohammad Abdulaziz, Florian Pommerening, and Augusto B. Corrêa
(2022). “Mechanically Proving Guarantees of Generalized Heuris-
tics: First Results and Ongoing Work.” In: IJCAI 2022 Workshop on
Generalization in Planning.

Serge Abiteboul, Richard Hull, and Victor Vianu (1995). Foundations of
Databases. Addison-Wesley (cit. on pp. 11, 22, 24, 31).

Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman (1979). “The Theory
of Joins in Relational Databases.” In: ACM Transactions on Database
Systems 4.3, pp. 297–314 (cit. on p. 130).

Yusra Alkhazraji, Michael Katz, Robert Mattmüller, Florian Pommeren-
ing, Alexander Shleyfman, and Martin Wehrle (2014). “Metis: Arm-
ing Fast Downward with Pruning and Incremental Computation.”
In: Eighth International Planning Competition (IPC-8): Planner Abstracts,
pp. 88–92 (cit. on p. 135).

Carlos Areces, Facundo Bustos, Martín Ariel Dominguez, and Jörg
Hoffmann (2014). “Optimizing Planning Domains by Automatic
Action Schema Splitting.” In: Proceedings of the Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2014).
Ed. by Steve Chien, Alan Fern, Wheeler Ruml, and Minh Do. AAAI
Press, pp. 11–19 (cit. on pp. 21, 44, 115).

Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski (1987).
“Complexity of Finding Embeddings in a k-Tree.” In: SIAM J. Alge-
braic Discrete Methods 8.2, pp. 277–284 (cit. on pp. 94, 98, 99).

Masataro Asai and Alex Fukunaga (2017). “Exploration Among and
Within Plateaus in Greedy Best-First Search.” In: Proceedings of the
Twenty-Seventh International Conference on Automated Planning and
Scheduling (ICAPS 2017). Ed. by Laura Barbulescu, Jeremy Frank,
Mausam, and Stephen F. Smith. AAAI Press, pp. 11–19 (cit. on p. 89).

François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ull-
man (1986). “Magic Sets and Other Strange Ways to Implement
Logic Programs.” In: Proceedings of the 5th ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS 1986). ACM,
pp. 1–15 (cit. on p. 149).

Philip A. Bernstein and Nathan Goodman (1981). “Power of Natural
Semijoins.” In: SIAM Journal on Computing 10.4, pp. 751–771 (cit. on
pp. 24, 26, 27).

Viktor Besin, Markus Hecher, and Stefan Woltran (2022). “Body-
Decoupled Grounding via Solving: A Novel Approach on the ASP
Bottleneck.” In: Proceedings of the 31st International Joint Conference
on Artificial Intelligence (IJCAI 2022). Ed. by Luc De Raedt. IJCAI,
pp. 2546–2552 (cit. on pp. 4, 5, 94, 107).

157

158 bibliography

Christoph Betz and Malte Helmert (2009). “Planning with h+ in Theory
and Practice.” In: ICAPS 2009 Workshop on Heuristics for Domain-
Independent Planning (HDIP), pp. 64–69 (cit. on p. 16).

Wolfgang Bibel (1986). “A Deductive Solution for Plan Generation.”
In: New Generation Computing 4.2, pp. 115–32 (cit. on p. 16).

Manuel Bichler, Michael Morak, and Stefan Woltran (2016). “lpopt: A
Rule Optimization Tool for Answer Set Programming.” In: Proceed-
ings of the Twenty-Sixth International Symposium on Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2016). Springer, pp. 114–
130 (cit. on pp. 4, 5, 63, 94, 100, 147).

Arthur Bit-Monnot (2018). “A constraint-based encoding for domain-
independent temporal planning.” In: Proceedings of the 24th Interna-
tional Conference on Principles and Practice of Constraint Programming.
Ed. by John Hooker. Springer-Verlag, pp. 30–46 (cit. on p. 44).

Bernhard Bliem, Michael Morak, Marius Moldovan, and Stefan Woltran
(2020). “The Impact of Treewidth on Grounding and Solving of An-
swer Set Programs.” In: Journal of Artificial Intelligence Research 67,
pp. 35–80 (cit. on pp. 4, 105).

Avrim Blum and Merrick L. Furst (1997). “Fast Planning Through
Planning Graph Analysis.” In: Artificial Intelligence 90.1–2, pp. 281–
300 (cit. on p. 74).

Miquel Bofill, Joan Espasa, and Mateu Villaret (2016). “The RANTAN-
PLAN planner: system description.” In: The Knowledge Engineering
Review 31.5, pp. 452–464 (cit. on p. 44).

Blai Bonet and Héctor Geffner (2001). “Planning as Heuristic Search.”
In: Artificial Intelligence 129.1, pp. 5–33 (cit. on pp. 4, 15, 17, 18, 47–49,
80, 93, 147).

Clemens Büchner, Remo Christen, Augusto B. Corrêa, Salomé Eriksson,
Patrick Ferber, Jendrik Seipp, and Silvan Sievers (2023). “Fast Down-
ward Stone Soup 2023.” In: Tenth International Planning Competition
(IPC-10): Planner Abstracts.

Tom Bylander (1994). “The Computational Complexity of Proposi-
tional STRIPS Planning.” In: Artificial Intelligence 69.1–2, pp. 165–204

(cit. on pp. 15, 48).
Luca Cabibbo (1998). “The Expressive Power of Stratified Logic Pro-

grams with Value Invention.” In: Information and Computation 147.1,
pp. 22–56 (cit. on p. 130).

Andrea Calì, Georg Gottlob, and Michael Kifer (2013). “Taming the
Infinite Chase: Query Answering under Expressive Relational Con-
straints.” In: Journal of Artificial Intelligence Research 48, pp. 115–174

(cit. on pp. 130, 131, 134, 150).
Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris

(2010). “Datalog+/-: A Family of Languages for Ontology Query-
ing.” In: Datalog Reloaded - First International Workshop (Datalog 2010).
Ed. by Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Jon
Sellers. Springer, pp. 351–368 (cit. on pp. 129, 134, 150).

bibliography 159

Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari
(2017). “I-DLV: The new intelligent grounder of DLV.” In: Intelligenza
Artificiale 11.1, pp. 5–20 (cit. on p. 116).

Ashok K. Chandra and Philip M. Merlin (1977). “Optimal implemen-
tation of conjunctive queries in relational databases.” In: Proceedings
of the 9th Annual ACM Symposium on the Theory of Computing (STOC
1977). Ed. by John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison. ACM, pp. 77–90 (cit. on pp. 4, 23, 24, 147).

Edgar F. Codd (1970). “A relational model of data for large shared
data banks.” In: Communications of the ACM 13.6, pp. 377–387 (cit. on
pp. 4, 24, 147).

Stephen A. Cook (1971). “The complexity of theorem-proving pro-
cedures.” In: Proceedings of the 3rd Annual ACM Symposium on the
Theory of Computing (STOC 1971). Ed. by Michael A. Harrison, Ranan
B. Banerji, and Jeffrey D. Ullman. ACM, pp. 151–158 (cit. on pp. 154,
155).

Stephen A. Cook (1973). “A Hierarchy for Nondeterministic Time
Complexity.” In: Journal of Computer and System Sciences 7.4, pp. 343–
353 (cit. on p. 154).

Augusto B. Corrêa (2019). “Planning using Lifted Task Representa-
tions.” MA thesis. University of Basel (cit. on p. 32).

Augusto B. Corrêa (2024). Code from the Ph.D. thesis “Planning with
Different Representations”. https : / / doi . org / 10 . 5281 / zenodo .

12706513 (cit. on p. 5).
Augusto B. Corrêa, Clemens Büchner, and Remo Christen (2023a).

“Zero-Knowledge Proofs for Classical Planning Problems.” In: Pro-
ceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence
(AAAI 2023). Ed. by Yiling Chen and Jennifer Neville. AAAI Press,
pp. 11955–11962.

Augusto B. Corrêa and Giuseppe De Giacomo (2024). “Lifted Planning:
Recent Advances in Planning Using First-Order Representations.”
In: Proceedings of the 33rd International Joint Conference on Artificial
Intelligence (IJCAI 2024). Ed. by Kate Larson. IJCAI, pp. 8010–8019.

Augusto B. Corrêa, Giuseppe De Giacomo, Malte Helmert, and Sasha
Rubin (2024b). Planning with Object Creation – Technical Report. Tech.
rep. CS-2024-002. University of Basel, Department of Mathematics
and Computer Science (cit. on p. 135).

Augusto B. Corrêa, Giuseppe De Giacomo, Malte Helmert, and Sasha
Rubin (2024a). “Planning with Object Creation.” In: Proceedings of
the Thirty-Fourth International Conference on Automated Planning and
Scheduling (ICAPS 2024). Ed. by Sara Bernardini and Christian Muise.
AAAI Press, pp. 104–113 (cit. on p. 143).

Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide Mario
Longo, and Jendrik Seipp (2023b). “Levitron: Combining Ground
and Lifted Planning.” In: Tenth International Planning Competition
(IPC-10): Planner Abstracts.

https://doi.org/10.5281/zenodo.12706513
https://doi.org/10.5281/zenodo.12706513

160 bibliography

Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide Mario
Longo, and Jendrik Seipp (2023c). “Scorpion Maidu: Width Search
in the Scorpion Planning System.” In: Tenth International Planning
Competition (IPC-10): Planner Abstracts (cit. on pp. 77, 89).

Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide Mario
Longo, and Jendrik Seipp (2023d). “The Powerlifted Planning Sys-
tem in the IPC 2023.” In: Tenth International Planning Competition
(IPC-10): Planner Abstracts.

Augusto B. Corrêa, Guillem Francès, Florian Pommerening, and Malte
Helmert (2021). “Delete-Relaxation Heuristics for Lifted Classical
Planning.” In: Proceedings of the Thirty-First International Conference
on Automated Planning and Scheduling (ICAPS 2021). Ed. by Robert P.
Goldman, Susanne Biundo, and Michael Katz. AAAI Press, pp. 94–
102 (cit. on pp. 43, 75).

Augusto B. Corrêa, Markus Hecher, Malte Helmert, Davide Mario
Longo, Florian Pommerening, and Stefan Woltran (2023e). “Ground-
ing Planning Tasks Using Tree Decompositions and Iterated Solv-
ing.” In: Proceedings of the Thirty-Third International Conference on Au-
tomated Planning and Scheduling (ICAPS 2023). Ed. by Sven Koenig,
Roni Stern, and Mauro Vallati. AAAI Press, pp. 100–108 (cit. on
p. 116).

Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès (2020). “Lifted Successor Generation using Query Optimiza-
tion Techniques.” In: Proceedings of the Thirtieth International Con-
ference on Automated Planning and Scheduling (ICAPS 2020). Ed. by
J. Christopher Beck, Erez Karpas, and Shirin Sohrabi. AAAI Press,
pp. 80–89 (cit. on pp. 6, 43).

Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès (2022). “The FF Heuristic for Lifted Classical Planning.” In:
Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence
(AAAI 2022). Ed. by Vasant Honavar and Matthijs Spaan. AAAI
Press, pp. 9716–9723 (cit. on p. 75).

Augusto B. Corrêa and Jendrik Seipp (2022). “Best-First Width Search
for Lifted Classical Planning.” In: Proceedings of the Thirty-Second
International Conference on Automated Planning and Scheduling (ICAPS
2022). Ed. by Sylvie Thiébaux and William Yeoh. AAAI Press, pp. 11–
15 (cit. on p. 89).

Augusto B. Corrêa and Jendrik Seipp (2024). “Consolidating LAMA
with Best-First Width Search.” In: ICAPS 2024 Workshop on Heuristics
and Search for Domain-independent Planning (HSDIP) (cit. on p. 89).

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov
(2001). “Complexity and Expressive Power of Logic Programming.”
In: ACM Computing Surveys 33.3, pp. 374–425 (cit. on pp. 93, 105).

Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi (2016).
“Bounded situation calculus action theories.” In: Artificial Intelligence
237, pp. 172–203 (cit. on pp. 16, 143).

bibliography 161

Rik De Graaff, Augusto B. Corrêa, and Florian Pommerening (2021).
“Concept Languages as Expert Input for Generalized Planning: Pre-
liminary Results.” In: ICAPS 2021 Workshop on Knowledge Engineering
for Planning and Scheduling.

Daniel Doebber, André Grahl Pereira, and Augusto B. Corrêa (2023).
“OpCount4Sat: Operator Counting Heuristics for Satis- ficing Plan-
ning.” In: Tenth International Planning Competition (IPC-10): Planner
Abstracts.

Carmel Domshlak, Michael Katz, and Alexander Shleyfman (2015).
Symmetry Breaking in Deterministic Planning as Forward Search: Orbit
Space Search Algorithm. Tech. rep. IS/IE-2015-03. Technion (cit. on
p. 135).

James E. Doran and Donald Michie (1966). “Experiments with the
Graph Traverser program.” In: Proceedings of the Royal Society A 294,
pp. 235–259 (cit. on p. 15).

Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas (1994).
Mathematical Logic. 2nd. Springer-Verlag (cit. on p. 9).

Stefan Edelkamp, Alberto Lluch-Lafuente, and Ionut Moraru (2019).
Introducing Dynamic Object Creation to PDDL Planning. https://
openreview.net/forum?id=rkxRj58y5N (cit. on p. 143).

Mojtaba Elahi and Jussi Rintanen (2024). “Optimizing the Optimization
of Planning Domains by Automatic Action Schema Splitting.” In:
Proceedings of the Thirty-Eigth AAAI Conference on Artificial Intelligence
(AAAI 2024). Ed. by Michael J. Wooldridge, Jennifer G. Dy, and
Sriraam Natarajan. AAAI Press, pp. 20096–20103 (cit. on p. 115).

Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian (1991). Com-
plexity, Decidability and Undecidability Results for Domain-Independent
Planning: A Detailed Analysis. Tech. rep. CS-TR-2797, UMIACS-TR-
91-154, SRC-TR-91-96. University of Maryland (cit. on p. 134).

Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian (1995). “Complex-
ity, Decidability and Undecidability Results for Domain-Independent
Planning.” In: Artificial Intelligence 76.1–2, pp. 75–88 (cit. on pp. 15,
134).

Joan Espasa, Jordi Coll, Ian Miguel, and Mateu Villaret (2019). “To-
wards Lifted Encodings for Numeric Planning in Essence Prime.” In:
CP 2019 Workshop on Constraint Modelling and Reformulation (cit. on
p. 44).

Wolfgang Faber, Nicola Leone, and Simona Perri (2012). “The Intelli-
gent Grounder of DLV.” In: Correct Reasoning: Essays on Logic-Based
AI in Honour of Vladimir Lifschitz. Ed. by Esra Erdem, Joohyung Lee,
Yuliya Lierler, and David Pearce. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 247–264 (cit. on p. 116).

Ronald Fagin (1983). “Acyclic Database Schemes (of Various Degrees):
A Painless Introduction.” In: Colloquium on Trees in Algebra and
Programming, pp. 65–89 (cit. on p. 24).

https://openreview.net/forum?id=rkxRj58y5N
https://openreview.net/forum?id=rkxRj58y5N

162 bibliography

Johannes K. Fichte, Markus Hecher, and Florim Hamiti (2021). “The
Model Counting Competition 2020.” In: ACM Journal of Experimental
Algorithmics 26.13, pp. 1–26 (cit. on p. 110).

Maximilian Fickert (2018). “Making Hill-Climbing Great Again through
Online Relaxation Refinement and Novelty Pruning.” In: Proceedings
of the 11th Annual Symposium on Combinatorial Search (SoCS 2018).
Ed. by Vadim Bulitko and Sabine Storandt. AAAI Press, pp. 158–162

(cit. on p. 89).
Maximilian Fickert (2020). “A Novel Lookahead Strategy for Delete

Relaxation Heuristics in Greedy Best-First Search.” In: Proceedings
of the Thirtieth International Conference on Automated Planning and
Scheduling (ICAPS 2020). Ed. by J. Christopher Beck, Erez Karpas,
and Shirin Sohrabi. AAAI Press, pp. 119–123 (cit. on p. 89).

Maximilian Fickert and Jörg Hoffmann (2017). “Complete Local Search:
Boosting Hill-Climbing through Online Relaxation Refinement.” In:
Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling (ICAPS 2017). Ed. by Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press, pp. 107–
115 (cit. on p. 89).

Maximilian Fickert and Jörg Hoffmann (2018). “OLCFF: Online-Learning
hCFF.” In: Ninth International Planning Competition (IPC-9): Planner
Abstracts, pp. 17–19 (cit. on p. 89).

Richard E. Fikes and Nils J. Nilsson (1971). “STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.” In:
Artificial Intelligence 2, pp. 189–208 (cit. on pp. 12, 17, 21, 39).

Daniel Fišer (2020). “Lifted Fact-Alternating Mutex Groups and Pruned
Grounding of Classical Planning Problems.” In: Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020).
Ed. by Vincent Conitzer and Fei Sha. AAAI Press, pp. 9835–9842

(cit. on pp. 45, 97, 111, 114, 115).
Avierzi S. Fraenkel and David Lichtenstein (1981). “Computing a

perfect strategy for n× n Chess requires time exponential in n.” In:
Journal of Combinatorial Theory (Series A) 31.2, pp. 199–214 (cit. on
p. 154).

Guillem Francès (2017). “Effective Planning with Expressive Lan-
guages.” PhD thesis. Universitat Pompeu Fabra (cit. on p. 45).

Guillem Francès and Héctor Geffner (2016). “∃-STRIPS: Existential
Quantification in Planning and Constraint Satisfaction.” In: Proceed-
ings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI 2016). Ed. by Subbarao Kambhampati. AAAI Press, pp. 3082–
3088 (cit. on p. 45).

Guillem Francès, Hector Geffner, Nir Lipovetzky, and Miquel Ramiréz
(2018). “Best-First Width Search in the IPC 2018: Complete, Sim-
ulated, and Polynomial Variants.” In: Ninth International Planning
Competition (IPC-9): Planner Abstracts, pp. 23–27 (cit. on pp. 18, 77,
78, 85, 86, 93).

bibliography 163

Guillem Francès, Miquel Ramírez, Nir Lipovetzky, and Héctor Geffner
(2017). “Purely Declarative Action Representations are Overrated:
Classical Planning with Simulators.” In: Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2017). Ed. by
Carles Sierra. IJCAI, pp. 4294–4301 (cit. on pp. 77–79, 82, 85, 89, 147).

Raquel Fuentetaja and Tomás de la Rosa (2016). “Compiling irrele-
vant objects to counters. Special case of creation planning.” In: AI
Communications 29.3, pp. 435–467 (cit. on pp. 119, 142, 143).

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub (2019). “Multi-shot ASP solving with clingo.” In: Theory and
Practice of Logic Programming 19.1, pp. 27–82 (cit. on pp. 94, 109, 115).

Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub
(2011). “Advances in gringo Series 3.” In: Proceedings of the Eleventh
International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR 2011). Ed. by James P. Delgrande and Wolfgang
Faber. Springer Berlin Heidelberg, pp. 345–351 (cit. on pp. 90, 94,
97, 147).

Michael Gelfond and Vladimir Lifschitz (1988). “The Stable Model
Semantics for Logic Programming.” In: Proceedings of the Fifth In-
ternational Conference and Symposium on Logic Programming. Ed. by
Robert A. Kowalski and Kenneth A. Bowen. MIT Press, pp. 1070–
1080 (cit. on p. 105).

Michael Gelfond and Vladimir Lifschitz (1991). “Classical Negation
in Logic Programs and Disjunctive Databases.” In: New Generation
Computing 9.3/4, pp. 365–386 (cit. on p. 105).

Daniel Gnad, Álvaro Torralba, Martín Ariel Domínguez, Carlos Areces,
and Facundo Bustos (2019). “Learning How to Ground a Plan –
Partial Grounding in Classical Planning.” In: Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI 2019). AAAI
Press, pp. 7602–7609 (cit. on pp. 44, 115).

Georg Gottlob, Nicola Leone, and Francesco Scarcello (2002). “Hyper-
tree decompositions and tractable queries.” In: Journal of Computer
and System Sciences 64.3, pp. 579–627 (cit. on pp. 4, 43, 106, 148).

Marc H. Graham (1979). On the Universal Relation. Tech. rep. University
of Toronto (cit. on p. 24).

Cordell Green (1969a). “Application of theorem proving to problem
solving.” In: Proceedings of the 1st International Joint Conference on
Artificial Intelligence (IJCAI 1969). Ed. by Donald E. Walker and Lewis
M. Norton. William Kaufmann, pp. 219–239 (cit. on p. 17).

Cordell Green (1969b). “Theorem-proving by resolution as a basis
for question-answering systems.” In: Machine Intelligence 4. Ed. by
Bernard Meltzer and Donald Michie. Edinburgh University Press,
pp. 183–205 (cit. on p. 17).

Martin Grohe and Pascal Schweitzer (2020). “The graph isomorphism
problem.” In: Communications of the ACM 63.11, pp. 128–134 (cit. on
p. 135).

164 bibliography

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael (1968). “A Formal
Basis for the Heuristic Determination of Minimum Cost Paths.” In:
IEEE Transactions on Systems Science and Cybernetics 4.2, pp. 100–107

(cit. on p. 15).
Juris Hartmanis and Richard Edwin Stearns (1965). “On the Computa-

tional Complexity of Algorithms.” In: Transactions of the American
Mathematical Society 117, pp. 285–306 (cit. on p. 154).

Patrik Haslum (2007). “Reducing Accidental Complexity in Planning
Problems.” In: Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007). Ed. by Manuela M. Veloso,
pp. 1898–1903 (cit. on p. 115).

Patrik Haslum (2011). “Computing Genome Edit Distances using
Domain-Independent Planning.” In: ICAPS 2011 Scheduling and Plan-
ning Applications woRKshop, pp. 45–51 (cit. on pp. 21, 93, 115).

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian
Muise (2019). An Introduction to the Planning Domain Definition Lan-
guage. Vol. 13. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning 2. Morgan & Claypool (cit. on pp. 5, 14, 18, 21, 119,
120).

Malte Helmert (2006). “The Fast Downward Planning System.” In:
Journal of Artificial Intelligence Research 26, pp. 191–246 (cit. on pp. 18,
38, 44, 48, 59, 65, 72, 73, 93, 141).

Malte Helmert (2009). “Concise Finite-Domain Representations for
PDDL Planning Tasks.” In: Artificial Intelligence 173, pp. 503–535

(cit. on pp. 4, 5, 14, 21, 44, 47, 50–53, 62, 63, 66, 67, 90, 93–97, 99, 100,
111, 113–115, 148, 149).

Malte Helmert and Carmel Domshlak (2009). “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Proceed-
ings of the Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS 2009). Ed. by Alfonso Gerevini, Adele Howe,
Amedeo Cesta, and Ioannis Refanidis. AAAI Press, pp. 162–169

(cit. on p. 48).
Malte Helmert, Silvan Sievers, Alexander Rovner, and Augusto B. Cor-

rêa (2022). “On the Complexity of Heuristic Synthesis for Satisficing
Classical Planning: Potential Heuristics and Beyond.” In: Proceedings
of the Thirty-Second International Conference on Automated Planning and
Scheduling (ICAPS 2022). Ed. by Sylvie Thiébaux and William Yeoh.
AAAI Press, pp. 124–133.

Jörg Hoffmann (2005). “Where ‘Ignoring Delete Lists’ Works: Local
Search Topology in Planning Benchmarks.” In: Journal of Artificial
Intelligence Research 24, pp. 685–758 (cit. on p. 16).

Jörg Hoffmann, Piergiorgio Bertoli, Malte Helmert, and Marco Pistore
(2009). “Message-Based Web Service Composition, Integrity Con-
straints, and Planning under Uncertainty: A New Connection.” In:
Journal of Artificial Intelligence Research 35, pp. 49–117 (cit. on pp. 125,
142, 143).

bibliography 165

Jörg Hoffmann and Bernhard Nebel (2001). “The FF Planning System:
Fast Plan Generation Through Heuristic Search.” In: Journal of Artifi-
cial Intelligence Research 14, pp. 253–302 (cit. on pp. 4, 16, 18, 41, 47,
48, 50, 58, 59, 65, 89, 93, 114, 147).

Rostislav Horčík and Daniel Fišer (2021). “Endomorphisms of Lifted
Planning Problems.” In: Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS 2021). Ed. by
Robert P. Goldman, Susanne Biundo, and Michael Katz. AAAI Press,
pp. 174–183 (cit. on pp. 6, 43, 74, 75).

Rostislav Horčík, Daniel Fišer, and Álvaro Torralba (2022). “Homomor-
phisms of Lifted Planning Tasks: The Case for Delete-free Relaxation
Heuristics.” In: Proceedings of the Thirty-Sixth AAAI Conference on Ar-
tificial Intelligence (AAAI 2022). Ed. by Vasant Honavar and Matthijs
Spaan. AAAI Press, pp. 9767–9775 (cit. on pp. 75, 149).

Neil Immerman (1986). “Relational Queries Computable in Polynomial
Time.” In: Information and Control 68.1-3, pp. 86–104 (cit. on pp. 12,
93).

Tomi Janhunen (2006). “Some (in)translatability results for normal
logic programs and propositional theories.” In: Journal of Applied
Non-Classical Logics 16.1–2, pp. 35–86 (cit. on p. 110).

Lucas Galery Käser, Clemens Büchner, Augusto B. Corrêa, Florian
Pommerening, and Gabriele Röger (2022). “Machetli: Simplifying
Input Files for Debugging.” In: ICAPS 2022 System Demonstrations
and Exhibits.

Michael Katz and Jörg Hoffmann (2014). “Mercury Planner: Pushing
the Limits of Partial Delete Relaxation.” In: Eighth International
Planning Competition (IPC-8): Planner Abstracts, pp. 43–47 (cit. on
p. 93).

Michael Katz, Nir Lipovetzky, Dany Moshkovich, and Alexander
Tuisov (2017). “Adapting Novelty to Classical Planning as Heuristic
Search.” In: Proceedings of the Twenty-Seventh International Conference
on Automated Planning and Scheduling (ICAPS 2017). Ed. by Laura
Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith. AAAI
Press, pp. 172–180 (cit. on pp. 80, 89).

Henry Kautz, David McAllester, and Bart Selman (1996). “Encoding
Plans in Propositional Logic.” In: Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning
(KR 1996). Ed. by Luigia Carlucci Aiello, Jon Doyle, and Stuart C.
Shapiro. Morgan Kaufmann, pp. 374–384 (cit. on p. 44).

Henry Kautz and Bart Selman (1992). “Planning as Satisfiability.” In:
Proceedings of the 10th European Conference on Artificial Intelligence
(ECAI 1992). Ed. by Bernd Neumann. John Wiley and Sons, pp. 359–
363 (cit. on pp. 18, 44).

Emil Keyder and Héctor Geffner (2008). “Heuristics for Planning
with Action Costs Revisited.” In: Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008). Ed. by Malik Ghallab,

166 bibliography

Constantine D. Spyropoulos, Nikos Fakotakis, and Nikos Avouris.
IOS Press, pp. 588–592 (cit. on pp. 16, 48, 50).

Jana Köhler and Jörg Hoffmann (2000). “On the Instantiation of ADL
Operators Involving Arbitrary First-Order Formulas.” In: Proceedings
of the ECAI 2000 Workshop on New Results in Planning, Scheduling and
Design (PuK2000), pp. 74–82 (cit. on pp. 93, 114).

Alexander Koller and Ronald Petrick (2011). “Experiences with Plan-
ning for Natural Language Generation.” In: Computational Intelligence
27.1, pp. 23–40 (cit. on p. 21).

Robert A. Kowalski (1979). Logic for Problem Solving. Vol. 7. The Com-
puter Science Library: Artificial Intelligence Series. North-Holland
(cit. on p. 16).

Jean-Marie Lagniez and Pierre Marquis (2014). “Preprocessing for
Propositional Model Counting.” In: Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI 2014). Ed. by Carla E.
Brodley and Peter Stone. AAAI Press, pp. 2688–2694 (cit. on p. 110).

Jean-Marie Lagniez and Pierre Marquis (2017). “An Improved Decision-
DNNF Compiler.” In: Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017). Ed. by Carles Sierra. IJCAI,
pp. 667–673 (cit. on p. 110).

Pascal Lauer, Álvaro Torralba, Daniel Fis̆er, Daniel Höller, Julia Wich-
lacz, and Jörg Hoffmann (2021). “Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Planning.”
In: Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI 2021). Ed. by Zhi-Hua Zhou. IJCAI, pp. 4119–4126

(cit. on pp. 6, 39, 65, 70, 71, 74, 86, 134).
Hector J. Levesque (2005). “Planning with Loops.” In: Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI 2005).
Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti. Professional
Book Center, pp. 509–515 (cit. on p. 16).

Vladimir Lifschitz (1987). “On the Semantics of STRIPS.” In: Reasoning
about Actions and Plans. Ed. by M. Georgeff and A. Lansky. Morgan
Kaufmann, pp. 1–9 (cit. on p. 17).

Nir Lipovetzky and Héctor Geffner (2012). “Width and Serialization
of Classical Planning Problems.” In: Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI 2012). Ed. by Luc De Raedt,
Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo Frasconi,
Fredrik Heintz, and Peter Lucas. IOS Press, pp. 540–545 (cit. on
pp. 4, 7, 77, 78, 89).

Nir Lipovetzky and Héctor Geffner (2014). “Width-based Algorithms
for Classical Planning: New Results.” In: Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI 2014). Ed. by
Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan. IOS Press,
pp. 1059–1060 (cit. on p. 89).

Nir Lipovetzky and Hector Geffner (2017). “Best-First Width Search:
Exploration and Exploitation in Classical Planning.” In: Proceedings

bibliography 167

of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI
2017). Ed. by Satinder Singh and Shaul Markovitch. AAAI Press,
pp. 3590–3596 (cit. on pp. 7, 74, 77–79, 86, 89, 136, 147).

Derek Long and Maria Fox (2003). “The 3rd International Planning
Competition: Results and Analysis.” In: Journal of Artificial Intelli-
gence Research 20, pp. 1–59 (cit. on pp. 119, 124, 139, 142).

Davide Mario Longo (2023). “On the Potential of Structural Decom-
position of Database and AI Problems.” PhD thesis. Technische
Universität Wien (cit. on pp. 115, 148).

David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv (1979). “Test-
ing Implications of Data Dependencies.” In: ACM Transactions on
Database Systems 4.4, pp. 455–469 (cit. on p. 130).

Rami Matloob and Mikhail Soutchanski (2016). “Exploring Organic
Synthesis with State-of-the-Art Planning Techniques.” In: ICAPS
2016 Scheduling and Planning Applications woRKshop, pp. 52–61 (cit.
on pp. 21, 93).

David A. McAllester and David Rosenblitt (1991). “Systematic Non-
linear Planning.” In: Proceedings of the Ninth National Conference on
Artificial Intelligence (AAAI 1991). Ed. by Thomas L. Dean and Kath-
leen R. McKeown. AAAI Press/MIT Press, pp. 634–639 (cit. on
p. 17).

John McCarthy (1958). “Programs with Common Sense.” In: Proceed-
ings of the Teddington Conference on the Mechanization of Thought Pro-
cesses. Her Majesty’s Stationary Office, London, pp. 75–91 (cit. on
p. 16).

John McCarthy (1963). Situations, actions, and causal laws. Memo 2, Stan-
ford University Artificial Intelligence Project, Stanford, California
(cit. on pp. 16, 143).

John McCarthy and Patrick J. Hayes (1969). “Some Philosophical
Problems from the Standpoint of Artificial Intelligence.” In: Machine
Intelligence 4. Ed. by Bernard Meltzer and Donald Michie. Edinburgh
University Press, pp. 463–502 (cit. on p. 16).

Drew McDermott (1996). “A Heuristic Estimator for Means-Ends Anal-
ysis in Planning.” In: Proceedings of the Third International Conference
on Artificial Intelligence Planning Systems (AIPS 1996). Ed. by Brian
Drabble. AAAI Press, pp. 142–149 (cit. on pp. 17, 44, 75).

Drew McDermott (1999). “Using Regression-Match Graphs to Control
Search in Planning.” In: Artificial Intelligence 109.1–2, pp. 111–159

(cit. on p. 74).
Drew McDermott (2000). “The 1998 AI Planning Systems Competi-

tion.” In: AI Magazine 21.2, pp. 35–55 (cit. on pp. 18, 119).
Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-

win Ram, Manuela Veloso, Daniel Weld, and David Wilkins (1998).
PDDL – The Planning Domain Definition Language – Version 1.2. Tech.
rep. CVC TR-98-003/DCS TR-1165. Yale University: Yale Center for
Computational Vision and Control (cit. on pp. 5, 14, 18, 21, 120).

168 bibliography

Michael Morak and Stefan Woltran (2012). Preprocessing of Complex Non-
Ground Rules in Answer Set Programming. Tech. rep. DBAI-TR-2011-72

(Revised Version). Technische Universität Wien (cit. on pp. 63, 94,
99).

Hootan Nakhost and Martin Müller (2009). “Monte-Carlo Exploration
for Deterministic Planning.” In: Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009). Ed. by Craig
Boutilier. AAAI Press, pp. 1766–1771 (cit. on p. 89).

Allen Newell and Herbert A. Simon (1963). “GPS: A Program that
Simulates Human Thought.” In: Computers and Thought. Ed. by E. A.
Feigenbaum and J. Feldman. Oldenbourg, pp. 279–293 (cit. on p. 16).

Christos H. Papadimitriou and Mihalis Yannakakis (1999). “On the
Complexity of Database Queries.” In: Journal of Computer and System
Sciences 58.3, pp. 407–427 (cit. on p. 35).

Judea Pearl (1984). Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley (cit. on p. 15).

Edwin P. D. Pednault (1989). “ADL: Exploring the Middle Ground be-
tween STRIPS and the Situation Calculus.” In: Proceedings of the First
International Conference on Principles of Knowledge Representation and
Reasoning (KR 1989). Ed. by Ronald J. Brachman, Hector J. Levesque,
and Raymond Reiter. Morgan Kaufmann, pp. 324–332 (cit. on pp. 17,
21).

J. Scott Penberthy and Daniel S. Weld (1992). “UCPOP: A Sound,
Complete, Partial Order Planner for ADL.” In: Proceedings of the
Third International Conference on Principles of Knowledge Representation
and Reasoning (KR 1992). Ed. by Bernhard Nebel, Charles Rich, and
William Swartout. Morgan Kaufmann, pp. 103–114 (cit. on pp. 17,
44).

Alice Petrov and Christian Muise (2023). “Automated Planning Tech-
niques for Elementary Proofs in Abstract Algebra.” In: ICAPS 2023
Scheduling and Planning Applications woRKshop (cit. on pp. 119, 138,
142).

Julie Porteous, Laura Sebastia, and Jörg Hoffmann (2001). “On the
Extraction, Ordering, and Usage of Landmarks in Planning.” In:
Proceedings of the Sixth European Conference on Planning (ECP 2001).
Ed. by Amedeo Cesta and Daniel Borrajo. AAAI Press, pp. 174–182

(cit. on p. 129).
Raymond Reiter (2001). Knowledge in Action: Logical Foundations for

Specifying and Implementing Dynamical Systems. MIT Press (cit. on
pp. 16, 125, 143).

Silvia Richter and Malte Helmert (2009). “Preferred Operators and
Deferred Evaluation in Satisficing Planning.” In: Proceedings of the
Nineteenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2009). Ed. by Alfonso Gerevini, Adele Howe, Amedeo
Cesta, and Ioannis Refanidis. AAAI Press, pp. 273–280 (cit. on pp. 59,
65, 68, 73).

bibliography 169

Silvia Richter and Matthias Westphal (2008). The LAMA Planner —
Using Landmark Counting in Heuristic Search. IPC 2008 short papers,
http://ipc.informatik.uni-freiburg.de/Planners (cit. on p. 89).

Silvia Richter and Matthias Westphal (2010). “The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.” In: Journal
of Artificial Intelligence Research 39, pp. 127–177 (cit. on pp. 41, 48, 59,
86, 112).

Silvia Richter, Matthias Westphal, and Malte Helmert (2011). “LAMA
2008 and 2011 (planner abstract).” In: IPC 2011 Planner Abstracts,
pp. 50–54 (cit. on p. 50).

Bram Ridder (2013). “Lifted Heuristics: Towards More Scalable Plan-
ning Systems.” PhD thesis. King’s College London (cit. on pp. 22,
41, 44).

Bram Ridder and Maria Fox (2014). “Heuristic Evaluation Based on
Lifted Relaxed Planning Graphs.” In: Proceedings of the Twenty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS
2014). Ed. by Steve Chien, Alan Fern, Wheeler Ruml, and Minh Do.
AAAI Press, pp. 244–252 (cit. on pp. 41, 74, 75).

Pat Riddle, Jordan Douglas, Mike Barley, and Santiago Franco (2016).
“Improving Performance by Reformulating PDDL into a Bagged
Representation.” In: ICAPS 2016 Workshop on Heuristics and Search
for Domain-independent Planning (HSDIP), pp. 28–36 (cit. on p. 143).

Jussi Rintanen (2017). “Schematic Invariants by Reduction to Ground
Invariants.” In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI 2017). Ed. by Satinder Singh and Shaul
Markovitch. AAAI Press, pp. 3644–3650 (cit. on p. 45).

Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sat-
tar (2008). “A Compact and Efficient SAT Encoding for Planning.”
In: Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling (ICAPS 2008). Ed. by Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen. AAAI Press,
pp. 296–303 (cit. on p. 44).

Gabriele Röger and Malte Helmert (2010). “The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning.” In: Pro-
ceedings of the Twentieth International Conference on Automated Planning
and Scheduling (ICAPS 2010). Ed. by Ronen Brafman, Héctor Geffner,
Jörg Hoffmann, and Henry Kautz. AAAI Press, pp. 246–249 (cit. on
pp. 7, 78, 80).

Gabriele Röger, Silvan Sievers, and Michael Katz (2018). “Symmetry-
based Task Reduction for Relaxed Reachability Analysis.” In: Pro-
ceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018). Ed. by Mathijs de Weerdt,
Sven Koenig, Gabriele Röger, and Matthijs Spaan. AAAI Press,
pp. 208–217 (cit. on p. 45).

Stuart Russell and Peter Norvig (2020). Artificial Intelligence: A Modern
Approach. Pearson (cit. on p. 16).

http://ipc.informatik.uni-freiburg.de/Planners

170 bibliography

Zeynep G. Saribatur, Thomas Eiter, and Peter Schüller (2021). “Abstrac-
tion for non-ground answer set programs.” In: Artificial Intelligence
300, p. 103563 (cit. on p. 75).

Walter J. Savitch (1970). “Relationships Between Nondeterministic and
Deterministic Tape Complexities.” In: Journal of Computer and System
Sciences 4.2, pp. 177–192 (cit. on p. 154).

Francesco Scarcello, Gianluigi Greco, and Nicola Leone (2007). “Weighted
hypertree decompositions and optimal query plans.” In: Journal of
Computer and System Sciences 73.3, pp. 475–506 (cit. on p. 43).

Jendrik Seipp (2018). “Fast Downward Scorpion.” In: Ninth Interna-
tional Planning Competition (IPC-9): Planner Abstracts, pp. 77–79 (cit.
on p. 7).

Jendrik Seipp (2023). “Scorpion 2023.” In: Tenth International Planning
Competition (IPC-10): Planner Abstracts (cit. on p. 18).

Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert
(2017). Downward Lab. https://doi.org/10.5281/zenodo.790461
(cit. on p. 5).

Alexander Shleyfman, Alexander Tuisov, and Carmel Domshlak (2016).
“Blind Search for Atari-Like Online Planning Revisited.” In: Proceed-
ings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI 2016). Ed. by Subbarao Kambhampati. AAAI Press, pp. 3251–
3257 (cit. on p. 89).

Silvan Sievers, Gabriele Röger, Martin Wehrle, and Michael Katz (2019).
“Theoretical Foundations for Structural Symmetries of Lifted PDDL
Tasks.” In: Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling (ICAPS 2019). Ed. by Nir
Lipovetzky, Eva Onaindia, and David E. Smith. AAAI Press, pp. 446–
454 (cit. on p. 45).

Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B. Tenenbaum, Tomás
Lozano-Pérez, and Leslie Pack Kaelbling (2021). “Planning with
Learned Object Importance in Large Problem Instances using Graph
Neural Networks.” In: Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2021). Ed. by Kevin Leyton-Brown
and Mausam. AAAI Press, pp. 11962–11971 (cit. on p. 119).

Simon Ståhlberg (2023). “Lifted Successor Generation by Maximum
Clique Enumeration.” In: Proceedings of the 26th European Conference
on Artificial Intelligence (ECAI 2023). Ed. by Kobi Gal, Ann Nowé,
Grzegorz J. Nalepa, Roy Fairstein, and Roxana Rădulescu. IOS Press,
pp. 2194–2201 (cit. on pp. 6, 43).

Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II (1965).
“Hierarchies of memory limited computations.” In: Proceedings of
the Sixth Annual Symposium on Switching Circuit Theory and Logical
Design (SWCT 1965). IEEE Computer Society, pp. 179–190 (cit. on
p. 155).

Álvaro Torralba, Vidal Alcázar, Daniel Borrajo, Peter Kissmann, and
Stefan Edelkamp (2014). “SymBA*: A Symbolic Bidirectional A*

https://doi.org/10.5281/zenodo.790461

bibliography 171

Planner.” In: Eighth International Planning Competition (IPC-8): Plan-
ner Abstracts, pp. 105–109 (cit. on pp. 18, 93).

Jeffrey D. Ullman (1988). Principles of Database and Knowledge-Base
Systems. Volume I: Classical Database Systems. Computer Science Press
(cit. on pp. 63, 111).

Jeffrey D. Ullman (1989). Principles of Database and Knowledge-Base
Systems. Volume II: The New Technologies. Computer Science Press
(cit. on pp. 22, 24, 27, 29, 63, 111).

Moshe Y. Vardi (1982). “The Complexity of Relational Query Lan-
guages (Extended Abstract).” In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing (STOC ’82). Ed. by Harry R.
Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H.
Landweber. ACM Press, pp. 137–146 (cit. on pp. 12, 93).

Vincent Vidal (2011). “YAHSP2: Keep It Simple, Stupid.” In: IPC 2011
Planner Abstracts, pp. 83–90 (cit. on p. 89).

Daniel S. Weld (1994). “An Introduction to Least Commitment Plan-
ning.” In: AI Magazine 15.4, pp. 27–61 (cit. on p. 17).

Julia Wichlacz, Daniel Höller, and Jörg Hoffmann (2021). “Landmark
Heuristics for Lifted Planning – Extended Abstract.” In: Proceedings
of the 14th Annual Symposium on Combinatorial Search (SoCS 2021).
Ed. by Hang Ma and Ivan Serina. AAAI Press, pp. 242–244 (cit. on
p. 89).

Avi Wigderson (2019). Mathematics and Computation: A Theory Revolu-
tionizing Technology and Science. Princeton University Press (cit. on
p. 153).

P. G. Wodehouse (1930). Very Good, Jeeves. Herbert Jenkins (cit. on p. 1).
Fan Xie, Martin Müller, Robert C. Holte, and Tatsuya Imai (2014).

“Type-based Exploration with Multiple Search Queues for Satisficing
Planning.” In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence (AAAI 2014). Ed. by Carla E. Brodley and Peter
Stone. AAAI Press, pp. 2395–2401 (cit. on p. 90).

Mihalis Yannakakis (1981). “Algorithms for Acyclic Database Schemes.”
In: Proceedings of the 7th International Conference on Very Large Data
Bases (VLDB 1981). IEEE Press, pp. 82–94 (cit. on pp. 4, 22, 24, 26, 28,
29, 147).

Håkan L. S. Younes and Reid G. Simmons (2002). “On the Role of
Ground Actions in Refinement Planning.” In: Proceedings of the
Sixth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2002). Ed. by Malik Ghallab, Joachim Hertzberg,
and Paolo Traverso. AAAI Press, pp. 54–62 (cit. on pp. 17, 44).

Håkan L. S. Younes and Reid G. Simmons (2003). “VHPOP: Versatile
Heuristic Partial Order Planner.” In: Journal of Artificial Intelligence
Research 20, pp. 405–430 (cit. on pp. 17, 44).

C. T. Yu and M. Z. Ozsoyoglu (1979). “An algorithm for tree-query
membership of a distributed query.” In: Third International Computer

172 bibliography

Software and Applications Conference (COMPSAC 1979), pp. 306–312

(cit. on p. 24).
Lin Zhu and Robert Givan (2003). “Landmark Extraction via Planning

Graph Propagation.” In: ICAPS 2003 Doctoral Consortium, pp. 156–
160 (cit. on p. 73).

colophon

This document was typeset using the classicthesis package (v4.6) de-
veloped by André Miede and Ivo Pletikosić (https://bitbucket.org/
amiede/classicthesis/). The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”.

https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Contributions & Structure
	1.2 Experimental Setup
	1.3 Publications

	2 Background
	2.1 Conventions
	2.2 Logic Programming
	2.3 Classical Planning

	 Lifted Planning
	3 Lifted Successor Generation
	3.1 Conjunctive Queries
	3.2 Relational Algebra Redux
	3.3 Evaluating Conjunctive Queries in Practice
	3.4 A Database Perspective of Classical Planning
	3.5 Experimental Results
	3.6 Summary

	4 Lifted Delete-Relaxation Heuristics
	4.1 Delete-Relaxation Heuristics over Ground Tasks
	4.2 Lifted Relaxed Reachability
	4.3 Datalog-Based Heuristics
	4.4 Problems with our Approach
	4.5 Annotated Datalog
	4.6 Transformations of Annotated Datalog
	4.7 Experimental Results
	4.8 Summary

	5 Lifted Width Search
	5.1 Best-First Width Search
	5.2 Balancing Exploration and Exploitation
	5.3 Implementation
	5.4 Experiments
	5.5 Summary

	 Propositional Planning
	6 Grounding Planning Tasks
	6.1 Baseline: Fast Downward's Grounder
	6.2 A First Detour: Tree Decompositions
	6.3 Grounding Using Structural Decompositions
	6.4 Avoiding to Ground Actions
	6.5 A Second Detour: Answer Set Programming
	6.6 Grounding via Iterated Solving
	6.7 More Informed Logic Programs
	6.8 Solving Planning Tasks
	6.9 Summary

	 Planning with Object Creation
	7 Planning with Object Creation
	7.1 Details of First-Order Logic
	7.2 Planning Formalism
	7.3 Decidability Results
	7.4 Overall Procedure in Practice
	7.5 Implementation
	7.6 Experimental Results
	7.7 Summary

	 Conclusion
	8 Conclusion

	Appendix
	A Computational Complexity Redux
	 Bibliography
	Colophon

