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Abstract
For a given state space and admissible heuristic
function h there is always a tie-breaking strategy
for which A∗ expands the minimum number of
states [Dechter and Pearl, 1985]. We say that these
strategies have optimal expansion. Although such
a strategy always exists it may depend on the in-
stance, and we currently do not know a tie-breaker
that always guarantees optimal expansion. In this
paper, we study tie-breaking strategies for A∗. We
analyze common strategies from the literature and
prove that they do not have optimal expansion. We
propose a novel tie-breaking strategy using cost
adaptation that has always optimal expansion. We
experimentally analyze the performance of A∗ us-
ing several tie-breaking strategies on domains from
the IPC and zero-cost domains. Our best strategy
solves significantly more instances than the stan-
dard method in the literature and more than the
previous state-of-the-art strategy. Our analysis im-
proves the understanding of how to develop effec-
tive tie-breaking strategies and our results also im-
prove the state-of-the-art of tie-breaking strategies
for A∗.

1 Introduction
A∗ is the most popular best-first heuristic search algo-
rithm [Hart et al., 1968]. It expands states in order of in-
creasing f -values. For a given state s, the function f(s) is the
sum of the cost g(s) of the current path from the initial state
to state s, and the heuristic cost h(s) from s to a goal state. A
heuristic h is admissible if it never overestimates the cost of
a state to its closest goal state. In this case A∗ returns an op-
timal solution path of minimum cost C∗, if there is one. The
heuristic that returns the cost of an optimal path for all states
is called the perfect heuristic h∗. During the search, it is pos-
sible to have several states with the same f -value. Hence, A∗
has to use an order [f, τ ] with a tie-breaking strategy τ to se-
lect one of them to be expanded next. A∗ with a deterministic
tie-breaking strategy τ defines a unique expansion sequence
of states.

A state space evaluated by an admissible heuristic h is
nonpathological if there exists some cost-optimal path where

h(s) < h∗(s) for all non-goal states s on it. Dechter and
Pearl (1985) have shown that in this case the tie-breaker τ
plays no role as the set of states with f < C∗ contains all
states expanded by A∗. However, if the admissible heuristic
h on the state space is pathological, then A∗ will expand all
states with f < C∗ and additionally some states with f = C∗.
This set of states is known as the final plateau or final f -
layer. There is always a tie-breaking strategy τ that expands,
in addition to states with f(s) < C∗, only states on a short-
est cost-optimal path in the final f -layer (i.e., states along the
cost-optimal path with the least number of operators). In this
case, we say that tie-breaking strategy τ has optimal expan-
sion, or simply is optimal.

Most of the search and planning literature considers break-
ing ties in favor of smaller h-values to be a good practice
(e.g., [Holte, 2010; Hansen and Zhou, 2007]). Dechter and
Pearl (1985) describe A∗ as being agnostic with regard to the
tie-breaking strategy letting it “break ties arbitrarily, but in
favor of a goal state” and assume that only a few states s
will satisfy f(s) = C∗. However, Asai and Fukunaga (2016)
showed that this is often false and A∗ using tie-breaking
strategies that do not favor small h-values can solve more in-
stances and expand fewer states.

In many applications the goal is to minimize the use of
some resource (e.g., fuel in logistic problems), and operators
that do not use this resource can be modeled as having no
cost. Based on this observation Asai and Fukunaga (2016)
have introduced so-called zero-cost domains. In such do-
mains, the final plateau can account for a large part of the
expanded states and A∗ can follow long zero-cost paths that
can be avoided by a tie-breaking strategy.

Empirical analysis shows that all IPC instances using A∗
with heuristic hLM-cut which are solved in 5 minutes or less
are pathological and more than 95% of the zero-cost instances
solved using this time limit are also pathological. Hence, tie-
breakers are relevant for most of the instances in both bench-
marks.

In this paper we study tie-breaking strategies for A∗. We
first analyze previously proposed tie-breaking strategies and
prove that they are not always optimal. We also propose
a new strategy which is guaranteed to have optimal expan-
sion. We experimentally analyze the performance of A∗ us-
ing several strategies on the set of IPC instances and instances
with zero-cost operators where the perfect heuristic h∗ can be



computed. In practical settings using hLM-cut our new strate-
gies solve more instances than other methods in the literature.
Our results show how to build an optimal tie-breaking strat-
egy given h∗ and our analysis improves the understanding of
how to develop tie-breakers.

2 Background
State Space
Let S = 〈s0, S∗,O, cost〉 be a state space, where s0 is the
initial state, S∗ is a set of goal states and O is a set of oper-
ators. For a given state s there is a (possibly empty) sub-
set of operators in O that can be applied to s to generate
a set of successor states succ(s). Every operator o ∈ O
has a cost cost(o) ∈ R+

0 associated to a transition s → s′,
where s′ ∈ succ(s). A sequence of distinct states denoted as
s0 → s1 → · · · → sn is called a path, if for every pair of
consecutive states s → s′ we have s′ ∈ succ(s). If sn ∈ S∗
then the sequence is called a solution path (s-path).

Tie-Breaking Strategies
The A∗ algorithm receives a state space S and a heuris-
tic function h as input and outputs an s-path, if there is
one, or “unsolvable” otherwise. A∗ ordering states by [f, τ ]
with a tie-breaking strategy τ (where f = g + h and τ is
some function over S) expands a unique sequence of states
〈s0, s1, . . . , sn〉, called the expansion sequence. We assume
that A∗ keeps a priority queue denoted as OPEN that sorts
the states lexicographically in increasing order of [f, τ ]. To
expand a state means to remove it from OPEN and to gen-
erate all its successors. Note that in this way goal states are
only processed, i.e. removed from OPEN, but not expanded.
If the expansion sequence of A∗ with a given tie-breaking
strategy has the minimum number of states among all possi-
ble sequences we say that this strategy has optimal expansion
– or simply that it is optimal. If the function f uses the perfect
heuristic h∗, we denote it as f∗ = g + h∗.

An s-path is not fully informed if h(s) < h∗(s) for all
s /∈ S∗ on that path. Dechter and Pearl (1985) define a state
space S with admissible heuristic h to be nonpathological if
there exists at least one cost-optimal not fully informed s-
path. Conversely, a state space S with admissible heuristic h
is pathological if all cost-optimal s-paths are fully informed.

3 Common Tie-Breaking Strategies
In this section, we present a theoretical framework to analyze
tie-breaking strategies for A∗. Our framework is based on the
perfect heuristic h∗ as a fully informed tie-breaker. In state
spaces where we can compute h∗, A∗ with f∗ will only ex-
pand states whose f -value equals the optimal cost C∗. In this
setting, the tie-breaking strategy will have optimal expansion
if it only expands states on one cost-optimal s-path with the
least number of operators.

3.1 Analyzing h∗ as Tie-Breaker
The heuristic search literature usually considers breaking ties
by h to be a good approach. Therefore one would expect
that when having h∗, we could use its value as a tie-breaker,
leading to an strategy with optimal expansion. In this setting,
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Figure 1: Instances where tie-breaking by h∗, ĥ∗, and h∗
ε fails.

using order [f∗, h∗] means that A∗ uses f∗ as main evalua-
tion function and h∗ as tie-breaker, and any remaining ties
are solved arbitrarily.

However, using order [f∗, h∗] is not optimal, as it may ex-
pand more states than another strategy. Figure 1a shows an
example with two paths to goal states using only zero-cost
operators. State s0 is the initial state, doubly-circled states
are goals and ellipses represent arbitrarily long transition se-
quences of zero cost. In this situation, [f∗, h∗] provides no
information. Hence, the expansion sequence depends on how
remaining ties are solved, which does not guarantee opti-
mal expansion. To reach a goal from s0, A∗ may expand
three states using the left s-path (s0 → A → C → F ),
or an arbitrarily large set of states using the right s-path
(s0 → B → · · · → G→ H).

3.2 Analyzing ĥ∗ as Tie-Breaker
Asai and Fukunaga (2017) propose to use distance-to-go
heuristics as tie-breakers. A distance-to-go heuristic, denoted
ĥ, uses the same algorithm to compute h but replaces the cost
of all operators by one. Thus ĥ∗(s) is the minimum number
of operator applications necessary to reach a goal state from
s. In practice, A∗ using [f∗, ĥ∗] improves coverage in zero-
cost domains [Asai and Fukunaga, 2017].

However, order [f∗, ĥ∗] can also fail to produce an optimal
expansion, as the example of Figure 1a shows. Letα > 0. Af-
ter expanding s0, we have ĥ∗(A) = 2, because A can reach
the closest goal F applying two operators, and ĥ∗(B) = 1,
because B can reach its closest goal D applying only one op-
erator. As a consequence, A∗ expands state B first. However,
the s-path s0 → B → D is not optimal because the operator
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Figure 2: Example of an instance where order [f∗, h∗
c ] using cost adaptation fails for any value of c, and ε > 0.

that enables B to reach goal state F has cost α. Thus [f∗, ĥ∗]
expands four states (〈s0, B,A,C〉), and the optimal strategy
only three (〈s0, A,C〉).

4 Novel Strategies based on Cost Adaptation
The tie-breaking strategy using the perfect heuristic h∗ guides
the search along a cost-optimal path but fails to identify the
cost-optimal path with the least number of operators. The tie-
breaking strategy using the distance-to-go heuristic ĥ∗ guides
the search along a path with fewest operators to the goal but
fails to estimate the total cost of the path. We can combine
both estimates to improve the search performance.
Definition 1 (Cost-adapted heuristic). Let S =
〈s0, S∗,O, cost〉 be a state space and h be a heuristic
for S. A cost-adapted heuristic hc is a heuristic function for
S, where for all o ∈ O there is a new operator oc ∈ Oc
with cost(oc) = cost(o) + c and hc computes the heuristic
function by replacing O by Oc.

In other words, the cost-adapted heuristic hc is the same
algorithm to compute h on S, but adds a constant c to each
operator cost. We will call a tie-breaking strategy based on
hc a method using cost adaptation.

Richter et al. (2011) introduced the idea of adding one to
every operator cost in the satisficing LAMA solver. The in-
tuition is that by doing so, A∗ can combine the operator cost
with the cost of applying an operator. In the special case used
in the LAMA solver with c = 1 we denote hc as h+1.

4.1 Analyzing h∗c as Tie-Breaking Strategy
Now, we analyze the behavior of h∗c for different magnitudes
of c. First, consider c = εwhere ε is a small constant such that
ε � mino∈O{cost(o) | cost(o) > 0}. The effect of making
ε very small is that even for the longest path with l opera-
tors, the product lε is still smaller than the smallest difference
between a cost-optimal and a non-cost-optimal s-path. If we
apply [f∗, h∗ε ] to the example of Figure 1a it produces the op-
timal expansion 〈s0, A,C〉.

However, [f∗, h∗ε ] can also fail. Figure 1b shows an ex-
ample where A∗ with [f∗, h∗ε ] expands three states and the
optimal expansion only two. In this example, after expanding
s0, A∗ can expand A and B, where h∗ε (A) = α + ε while
h∗ε (B) = 2ε + |Di|ε. Thus, B is chosen for expansion, fol-
lowed by the sequence of states Di, leading to goal state E.
A∗ expands the path s0 → B → · · · → E instead of the
shortest cost-optimal path s0 → A→ C.

An approach to solve the example of Figure 1b is to use c =
M , where M � maxo∈O(cost(o)). In Figure 1b breaking
ties by h∗M produces the optimal expansion. Now, h∗M (A) =

α + M and h∗M (B) = 2M + |Di|M . Since M � α, A∗
expands A instead of B, and terminates at the goal state C,
leading the search to the optimal expansion sequence 〈s0, A〉.

However, h∗M fails to achieve the optimal expansion in the
example of Figure 1a, where we have h∗M (A) = 2M and
h∗M (B) = α + M . Since M � α, we have h∗M (A) >
h∗M (B) causing the search to expand B, leading to the same
problem of [f∗, ĥ∗].

Unfortunately, there is no strategy for selecting c that
works universally for any task. Figure 2 shows an example
where there is no constant c such that order [f∗, h∗c ] leads to
an optimal expansion. The optimal strategy must expand the
path s0 → A → C → X → A′ → C ′. However, for c > α,
after expanding the initial state s0 we have h∗c(B) < h∗c(A)
because of the path using the operator with cost α from B to
X , and thus A∗ will expand state B which is not optimal. For
c < α+ε, on the other hand, after expanding stateX , A∗ will
next select state B′ since h∗c(B

′) < h∗c(A
′), but the optimal

expansion strategy should expandA′ in order to minimize the
number of expansions. Since ε > 0 for every c one of the two
cases will fail. Despite this, cost adaptation will prove to be
useful in defining a tie-breaking strategy with optimal expan-
sion.

5 An Optimal Expansion Strategy with Cost
Adaptation

Dechter and Pearl (1985) have shown that for any state space
S and admissible heuristic function h there is always a tie-
breaking strategy τ such that A∗ with [f, τ ] presents optimal
expansion. The following theorem presents a strategy using
a single tie-breaker that achieves optimal expansion for ad-
missible and consistent heuristic functions h. This expansion
strategy only requires the evaluation function f to use a con-
sistent heuristic h – not necessarily h∗ – but it stills need h∗
for the tie-breaker, which now also considers the g values of
the states.

Theorem 1. For an admissible and consistent heuristic h, A∗
with order [g + h, τ ] and tie-breaker τ = g + h∗ε has optimal
expansion.

Proof. If there is no solution A∗ will always expand all reach-
able states and thus has optimal expansion. Otherwise, since
h is admissible and consistent, A∗ will process states by non-
decreasing f -values, ending with f = C∗ at some goal state.
We will show that A∗ with tie-breaker τ expands the least
number of states in the final f -layer, from which the claim
follows, since states with f < C∗ must be expanded by all
searches which find an optimal solution.
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Figure 3: Example of an instance where order [g + h, g + h∗
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if h is inconsistent. The h-value of each state is also showed.

Consider the moment when for the first time the state of
least f -value in OPEN has f = C∗. From this point on all
processed states have f = C∗ = g + h∗ and therefore are
processed in τ -order. For a state s on a cost-optimal path to a
goal we have h∗ε (s) ≤ h∗(s) + εd̄, where d̄ is an upper bound
on the distance from s to some goal, since a non-cost-optimal
path from s to some goal costs at least h∗(s) + ∆ for some
∆ > 0, and therefore h∗ε (s) ≤ h∗(s) + εd̄ < h∗ + ∆, by
choice of ε.1

Thus, for the state s of least τ -value we have τ(s) =
g(s) + h∗ε (s) = g(s) + h∗(s) + εd∗(s) where d∗(s) is the
shortest distance from s to a goal on some cost-optimal path,
and since g + h∗ is constant for all states with f = C∗, they
are processed in d∗-order. Now, since each state of distance
d∗ has at least one successor of shortest distance d∗ − 1 on a
cost-optimal path, the distance to the goal decreases in each
iteration, and A∗ expands exactly d∗ − 1 states before pro-
cessing a goal state. Since d∗ is the shortest distance on a
cost-optimal path, optimal expansion follows.

As a simple consequence of Theorem 1 we have that for A∗
with the perfect heuristic function h∗, tie-breaker τ = g+ h∗ε
has optimal expansion. Notice that optimal expansion does
not imply that A∗ finds a shortest cost-optimal solution, since
the shortest path is guaranteed only for the final f -layer.

The result from Theorem 1 is useful from the follow-
ing perspective: consider an inadmissible heuristic h where
h(s) = h∗(s) in a significant number of states but h(s) >
h∗(s) in only a few. Function h cannot be used to guide an
admissible search, but Theorem 1 suggests that we can use it
as an effective tie-breaking strategy.

Figure 3 illustrates an instance where order [g+ h, g+ h∗ε ]
fails if h is inconsistent. Heuristic values are shown in-
side each state. To achieve optimal expansion the algorithm
should expand paths s0 → A→ C → G or s0 → B → E →
G. However, whenever we expand state A, we must expand
stateD as well. Due to the inconsistency of the heuristic func-
tion h, we have f(D) < f(A) and arg mins∈OPEN f(s) =
D, hence this successor must be expanded before than any
other successor of A. Since our tie-breaking strategy g + h∗ε
cannot guarantee to favor the expansion of B over the ex-
pansion of A, it does not guarantee optimal expansion if h is
inconsistent.

1For integer costs, we can choose ε < 1/d̄.

If instead of using the optimal expansion strategy from
Theorem 1, we use [f∗, g + hε] (i.e., the perfect heuristic
is used for the evaluation function and not the tie-breaker),
we cannot guarantee optimal expansion anymore. Consider
the example of Figure 1a and assume that oα is the operator
causing the transition of cost α. Let h be an approximation
of h∗ that is incapable of capturing the necessity of applying
operator oα – i.e., it considers the cost of operator oα to be
0. Since A∗ uses f∗, we have f∗(A) = f∗(B) = C∗ = 0
for the successors A and B of s0. To break this tie, we use
g + hε. We have g + hε(A) = 2ε and g + hε(B) = ε due
to the possible path s0 → B → D where h cannot predict the
need of oα. Hence, B is expanded instead of A, and A∗ fails
to expand only the cost-optimal path with the least number of
operators.

6 Experiments
In our experiments, we tested the improvement of state ex-
pansions, search time and coverage for the different methods
studied here and previously mentioned in the literature. The
experiments use revision 6251 of the Fast-Downward plan-
ning system [Helmert, 2006] with the modifications of Asai
and Fukunaga (2017) and also the same benchmarks as them.
In total, we used 1104 instances from the IPC and 620 from
the zero-cost benchmarks of Asai and Fukunaga (2017). All
experiments have been run on a PC with an AMD FX-8150
processor running at 3.6 GHz and 32 GB of main memory. In
the case where τ cannot solve all ties, the remaining ones are
broken by FIFO order.

6.1 Comparing Theory and Practice
We first focus on the question if the theoretical advantage of
cost adaptation strategies translates into practice. For these
experiments we use a time limit of 30 minutes, a memory
limit of 4 GB, and the subset of 183 IPC and 87 zero-cost do-
mains, which could be solved optimally by all methods given
these limits and the internal limits of Fast-Downward to build
h∗. Thus, this reduced set of benchmarks contains instances
with smaller state spaces than usual.

Table 1 reports the geometric mean of the number of
expanded states for different combinations of primary A∗
heuristic and tie-breaker. For each combination, the table
shows the results for IPC and zero-cost domains separately.
The pair at the header of each column is denoted by h1, h2,
where h1 was used as the heuristic for the function f and h2
as the heuristic for the tie-breaking strategy. The best results
in each column are shown in bold. We can see that using the
benchmarks with a small state space, A∗ expands few states.

We first analyze the theoretical predictions using the per-
fect heuristic h∗ in function f and as tie-breaker. The results
are in the first two columns of Table 1. In practice, the theo-
retically optimal tie-breaker g+h∗ε performs best, and strictly
dominates the other tie-breakers on zero-cost domains.

In the second combination we relax the tie-breaker to
hLM-cut [Helmert and Domshlak, 2009]. As expected, the
number of expanded states increases for all tie-breakers,
showing that, in fact, tie-breaking strategy matters. The theo-
retical results do not guarantee an optimal expansion breaking



h∗, h∗ h∗, hLM-cut hLM-cut, h∗ hLM-cut, hLM-cut hLM-cut, hFF

IPC Z IPC Z IPC Z IPC Z IPC Z

[g + h1, h2] 12.05 124.49 13.34 244.44 69.92 549.94 79.24 805.68 80.79 690.19
[g + h1, ĥ2] 11.78 13.33 14.28 23.72 69.87 119.02 79.29 172.46 80.88 156.04
[g + h1, h2+1] 11.78 13.37 13.01 20.18 69.87 105.57 79.18 147.79 80.95 131.62
[g + h1, h2ε ] 11.78 13.39 12.63 21.33 69.88 105.57 79.36 144.93 79.63 142.02
[g + h1, g + h2ε ] 11.78 13.26 31.91 65.67 69.84 104.67 80.71 145.88 81.26 141.08

Table 1: Comparison of the geometric mean of the number of expanded states using different heuristics and tie-breaking strategies in IPC
domains (“IPC”) and zero-cost (“Z”) domains.

ties by τ = g+h∗ε in this case, and indeed we can see that the
strategy actually performs worse than other strategies. This
can be explained by the fact the hLM-cut is not fully informed.
Thus, when a successor state on a cost-optimal path is gener-
ated it tends to have a higher value of g + hLM-cut

ε , and leads
A∗ to first expand less informed states. This effect is less
pronounced for tie-breakers not using g.

In the remaining combinations, we switch roles and focus
on not fully informed searches using heuristic hLM-cut with
different tie-breakers. In all these cases, A∗ expands a signif-
icantly higher number of states. The fifth and sixth column
in Table 1 show the results for breaking ties using h∗. Even
though hLM-cut is not guaranteed to be consistent, we find that
the f -values never decrease in about 90 % of the instances in
both benchmarks. Hence, our result from Theorem 1 guar-
antees optimal expansion for [g + hLM-cut, g + h∗] in most
instances. In fact, all cost adaptation methods have a similar
performance on the IPC instances, and the theoretically opti-
mal tie-breaker g + h∗ε is the best method by a small margin.

We finally relax the tie-breaker to approximations of
h∗. Following Asai and Fukunaga (2017) we have selected
heuristics hLM-cut and hFF [Hoffmann and Nebel, 2001]. Note
that heuristic hFF is not admissible, but will not change the
optimality of the search when used as a tie-breaker. Both
cases expand more states than the optimal strategy, as ex-
pected, but the relative performance of the tie-breakers is very
similar, with little difference on the IPC benchmark. On the
zero-cost domains, breaking ties by ĥ is always the worst, and
methods using cost adaption are always the best.

Table 1 quantifies the advantage of our theoretically best
method on the restricted set of small instances, where h∗ can
be computed. Yet, some instances still need many expan-
sions when breaking ties using h∗ which is a fully informed
heuristic. For example, A∗ with order [g + hLM-cut, h∗] or
[g+h∗, h∗] expands 349.108 states in the first instance of the
ELEVATORS-UP domain, while order [g+hLM-cut, g+h∗ε ] ex-
pands 18 states. Instance P04 of the same domain presents a
similar behavior. In the ROVERS-FUEL domain, instance P05
has an optimal solution of cost C∗ = 3 with a length of 22
operators, but the order [f∗, hLM-cut] expands 272.171 states,
while the order [f∗, g + h∗ε ] expands exactly 22 states.

In summary, all cost adaptation strategies are similar on the
IPC instances, but far better than the default tie-breaker h on
zero-cost. Our results show that even in small state spaces
and using the perfect heuristic h∗, tie-breakers are important,

Method IPC (1104) Zero-cost (620)

[f, hLM-cut] 525 237

[f, ĥLM-cut] 531 301
[f, hLM-cut

+1 ] 530 299
[f, hLM-cut

ε ] 532 301
[f, g + hLM-cut

ε ] 524 300

[f, hFF] 548 251

[f, ĥFF] 557 338
[f, hFF

+1] 562 352
[f, hFF

ε ] 559 351
[f, g + hFF

ε ] 553 346

[f, ĥFF, 〈d〉 , LIFO] 530 328

Table 2: Comparison of the number of solved instances in IPC and
zero-cost benchmarks where f = g + hLM-cut.

even when not optimal. Still, the heuristic function is more
important than the tie-breaker, as the comparison between the
second and the third combinations confirms. The last two
combinations show that tie-breakers also make a difference
in practice, and there is enough room for improvement.

6.2 Performance on the Complete Set of Instances
We now turn to the practical performance of tie-breakers us-
ing cost adaptation. Our second experiment compares the
coverage of different tie-breaking strategies using f = g +
hLM-cut to guide the search on the complete set of 1104 IPC
and 620 zero-cost domains. In this experiment we have im-
posed limits of 4 GB and 5 min for each run, following Asai
and Fukunaga (2017).

The results are shown in Table 2. We compare our main
cost adaptation methods against the standard methods in the
literature and the current best deterministic tie-breaker on
zero-cost domains from Asai and Fukunaga (2017) (last row).
(The best non-deterministic tie-breaker of Asai and Fuku-
naga (2017) solves in average 2.3 instances more.) Looking
at the group of tie-breakers using hLM-cut we find that that all
methods using cost adaption perform better than the standard
tie-breaker h.

The second group using hFF in the tie-breaker dominates
the strategies using hLM-cut only. This confirms the observa-
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Figure 4: Expansions and expansions per second for IPC (top) and zero-cost (bottom) using A∗ with hLM-cut and different tie-breakers (axis).

tion of Asai and Fukunaga (2017) that breaking ties by hFF is
better than hLM-cut. However, we find that ĥFF also performs
better on zero-cost domains than their best strategy. This can
probably be explained by the difference between processor
speeds. Again the tie-breaker g + hFF

ε which is theoretically
best for h∗ is competitive. The overall best method is hFF

+1.
It solves five instances more on the IPC benchmark than ĥFF,
the best tie-breaker from the literature. The best known tie-
breaker for zero-cost instances is [f, ĥFF, 〈d〉 , LIFO] [Asai
and Fukunaga, 2017]. Here, hFF

+1 solves 24 instances more.
Figures 4a and 4b compare the number of expanded states

of the best method [f, hFF
+1] against the most used method in

literature, [f, hLM-cut] and the best method from the literature
[f, ĥFF]. The plots on top show results for IPC instances, the
ones on the bottom for zero-cost. We see that tie-breaking
with hFF

+1 expands fewer states on most of the instances com-
pared to hLM-cut, in particular on the zero-cost domains. The
number of expanded states compared to ĥFF is similar in IPC
but in zero-cost domains hFF

+1 outperforms ĥFF in general.
Another important issue about tie-breaking strategies is the

overhead to compute a second evaluation function. Figures 4c
and 4d compare the expansions per second of the methods.
We find that all methods expand about the same number of
states per second, with the exception of hLM-cut on zero-cost
domains.

In general lines, the “pure” cost adaptation methods
([f, hc]) using the hFF heuristic have the best performance.
Tie-breaking by hFF

+1 presents the best coverage in both
benchmarks.

7 Conclusion and Future Work
In this paper, we presented a tie-breaking strategy for A∗
with h∗ that guarantees the minimum number of expanded

states among all tie-breaking strategies. Our analysis showed
that even for the perfect heuristic h∗ previously proposed tie-
breakers fail in producing an optimal tie-breaking strategy.
Our results showed how to build an optimal tie-breaking strat-
egy for A∗ for an admissible and consistent heuristic h.

Our experiments confirm the results from Asai and Fuku-
naga (2017) that tie-breakers have the potential to increase
coverage and reduce the number of expanded states. In sum-
mary, our best method based on cost adaptation solves 152
instances more than breaking ties by h, the most common
tie-breaker in the literature, and more than the two determin-
istic methods from Asai and Fukunaga (2017) we have tested.
Our experiments showed that even in small state spaces and
with the perfect heuristic h∗, the performance of A∗ can be
improved by a better tie-breaking strategy. Our main contri-
bution in this work is to provide an analysis that enables a
better understanding of the role of tie-breaking strategies in
the performance of A∗.

Two ideas may be interesting to investigate further. The
first is an analysis similar to the one by Helmert and
Röger (2008) who investigated for specific domains the per-
formance of A∗ with almost perfect heuristics. One could
do the same with almost perfect tie-breakers. Second, one
may study the existence of effective domain-dependent tie-
breakers, not based on h∗.

Acknowledgments

This work was supported by FAPERGS as part of project
17/2551 − 0000867.7 and was conducted while the first au-
thor was a student at the Federal University of Rio Grande do
Sul.



References
[Asai and Fukunaga, 2016] Masataro Asai and Alex S Fuku-

naga. Tiebreaking strategies for A∗ search: How to ex-
plore the final frontier. In AAAI Conference on Artificial
Intelligence, pages 673–679, 2016.

[Asai and Fukunaga, 2017] Masataro Asai and Alex Fuku-
naga. Tie-breaking strategies for cost-optimal best first
search. Journal of Artificial Intelligence Research, 58:67–
121, 2017.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A∗. Journal of the ACM, 32(3):505–536, 1985.

[Hansen and Zhou, 2007] Eric A Hansen and Rong Zhou.
Anytime heuristic search. Journal of Artificial Intelligence
Research, 28:267–297, 2007.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Systems Science and
Cybernetics, 4(2):100–107, 1968.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
what’s the difference anyway? In International Confer-
ence on Automated Planning and Scheduling, pages 162–
169, 2009.

[Helmert and Röger, 2008] Malte Helmert and Gabriele
Röger. How good is almost perfect? In AAAI Confer-
ence on Artificial Intelligence, volume 8, pages 944–949,
2008.

[Helmert, 2006] Malte Helmert. The Fast Downward Plan-
ning System. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Holte, 2010] Robert C Holte. Common misconceptions
concerning heuristic search. In Symposium on Combina-
torial Search, 2010.

[Richter et al., 2011] Silvia Richter, Matthias Westphal, and
Malte Helmert. LAMA 2008 and 2011. In International
Planning Competition, pages 117–124, 2011.


	Introduction
	Background
	Common Tie-Breaking Strategies
	Analyzing h* as Tie-Breaker
	Analyzing * as Tie-Breaker

	Novel Strategies based on Cost Adaptation
	Analyzing h*c as Tie-Breaking Strategy

	An Optimal Expansion Strategy with Cost Adaptation
	Experiments
	Comparing Theory and Practice
	Performance on the Complete Set of Instances

	Conclusion and Future Work

