
Zero-Knowledge Proofs for Classical Planning Problems

Augusto B. Corrêa, Clemens Büchner, Remo Christen
University of Basel, Switzerland

{augusto.blaascorrea,clemens.buechner,remo.christen}@unibas.ch

Abstract

In classical planning, the aim is to find a sequence of deter-
ministic actions leading from the initial to a goal state. In this
work, we consider the scenario where a party who knows
the solution to a planning task, called the prover, wants to
convince a second party, the verifier, that it has the solution
without revealing any information about the solution itself.
This is relevant in domains where privacy is important, for
example when plans contain sensitive information or when
the solution should not be revealed upfront. We achieve this
by introducing a zero-knowledge protocol for plan existence.
By restricting ourselves to tasks with polynomially-bounded
plan length, we are able to construct a protocol that can be
run efficiently by both prover and verifier. The resulting pro-
tocol does not rely on any reduction, has a constant number
of rounds, and runs in time polynomial in the size of the task.

Introduction
Alice needs to solve a bunch of “real-world problems” but is
not sure how to deal with them. She remembers her neigh-
bor Bob talking about similar problems and asks if he has
any advice. Upon hearing Bob’s praise of classical planning,
Alice excitedly models all her problems as classical plan-
ning tasks. With the models in hand, only the solutions are
missing. Conveniently, Bob is the author of the famous Fast
Bobward planning system (cf. Hoffmann and Nebel 2001;
Helmert 2006), which is allegedly very fast, and he agrees
to solve Alice’s problems. Since Bob does classical planning
for a living, he expects to be compensated. Alice is happy to
pay her neighbor, but wants to be sure that Bob can actually
deliver what he promises. Bob assures Alice that he solved
the tasks already, but refuses to show her the solutions up-
front. The two are left with two questions: How can Alice be
sure that Bob really solved her tasks? And how can Bob con-
vince Alice without revealing anything about the solutions?

In this paper, we help Alice and Bob. We show a zero-
knowledge protocol (Goldwasser, Micali, and Rackoff 1985)
for proving plan existence. The protocol is interactive and
probabilistic. It is interactive because a prover (Bob) ex-
changes messages with a verifier (Alice) to prove that it in-
deed knows a plan for the task; it is probabilistic because

Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the verifier is capable of generating random bits, and be-
cause a successful outcome of the protocol only gives a high
probability that the prover is not fooling the verifier. Yet, the
protocol guarantees that the verifier does not learn anything,
besides that there exists a plan for the task.

We are interested in a protocol that can be executed ef-
ficiently. We want the prover to be able to convince the
verifier using few messages, while also limiting both to
polynomial-time computations. This limits the scope of our
protocol: classical planning is PSPACE-complete (Bylander
1994) and, while every language in PSPACE has a zero-
knowledge proof (Ben-Or et al. 1988; Lund et al. 1992;
Shamir 1992), the only known protocols for a PSPACE-
complete language are the ones by Shamir (1992) and by
Shen (1992) for true quantified Boolean formulas (QBF).
Unfortunately, these protocols do not have the desired effi-
ciency, so reducing a planning task to a QBF would not meet
our criteria. It is not known whether languages that are not
in NP have efficient zero-knowledge protocols. Thus, our
protocol is limited to tasks with polynomially-bounded plan
lengths, an NP-complete fragment of classical planning.

Our protocol can be applied to areas where privacy is a
concern. This is also the motivation for privacy-preserving
multi-agent planning (Brafman 2015; Torreño et al. 2017),
but the use-cases for each method are contrasting: privacy-
preserving planners deal mostly with problems where ac-
tions and states should be kept secret; our protocol deals
with problems where the solution should be kept secret.
Moreover, the two approaches have different computational
limitations. Privacy-preserving planners cannot be complete,
strong privacy preserving, and efficient (for a particular no-
tion of efficiency) at the same time (Tožička, Štolba, and
Komenda 2017), while our protocol can only efficiently han-
dle tasks in NP for which the prover already has a plan.

The idea of our protocol is to break up a plan into several
transitions. By making transitions indistinguishable from
each other, the prover guarantees that each individual tran-
sition does not reveal anything about the complete plan. At
every execution of the protocol, the verifier checks a single
transition to see if it is valid. The verifier then repeats the
protocol until it is confident that the complete plan is valid.
The presented protocol has a constant number of rounds
(i.e., message exchanges), and only requires polynomial-
time computation from the prover and the verifier.

Background
Classical Planning We use propositional STRIPS (Fikes
and Nilsson 1971) extended with negative preconditions. A
planning task (or simply task) Π = 〈V,A, I, G〉 has the fol-
lowing components. The set V is a finite set of propositional
variables. For any v ∈ V we say that v itself and ¬v are
its literals; v is called a positive literal and ¬v is called a
negative literal. Given a literal l, we write |l| to denote the
variable associated with l. A state s ⊆ V is a subset of the
variables denoting which variables are true in that state, i.e.,
v 7→ > for all v ∈ s and v 7→ ⊥ otherwise. A condition
C is a set of literals such that there are no l, l′ ∈ C where
|l| = |l′|. Let C+ and C− be the sets of all positive and neg-
ative literals inC, respectively. A state s satisfies a condition
C (written s |= C) if |l| ∈ s for all l ∈ C+ and |l| /∈ s for all
l ∈ C−. We denote the variables mentioned in condition C
as vars(C). The setA is a finite set of actions a, each with a
precondition pre(a) and an effect eff(a). Both precondition
and effect are conditions and, without loss of generality, we
assume that there is no literal l such that l ∈ pre(a) and
l ∈ eff(a) for any a ∈ A. Finally, I is a state called the
initial state, and G is a condition called the goal.

Action a ∈ A is applicable in state s if s |= pre(a). If
a is applicable in s, its application results in the successor
state sJaK = (s \ eff(a)−) ∪ eff(a)+. If a is not applica-
ble in s, sJaK is undefined. The notions of applicability and
successor states are extended to finite sequences of actions
π = 〈a1, . . . , an〉 in the natural way. We say that an action
sequence π has a transition (si−1, ai, si) iff ai is in π and
si−1JaiK = si where si−1 and si are states and 1 ≤ i ≤ n.

A goal state of Π is a state s such that s |= G. A plan for
a state s of Π is an action sequence π that takes s to a goal
state: sJπK |= G. The length of a plan π corresponds to the
number of actions in π and is denoted by |π|. A plan for I is
also called a plan for Π. A task Π is solvable if there exists
a plan for Π.

In this paper, we are interested in the language of all plan-
ning tasks that have plans with length bounded by some nat-
ural number k. We call this language BOUNDEDPLANEX.
Definition 1 (BOUNDEDPLANEX). Given a planning task
Π and k ∈ N, the pair 〈Π, k〉 is in BOUNDEDPLANEX iff
there exists a plan π for Π with |π| ≤ k.

Deciding if 〈Π, k〉 ∈ BOUNDEDPLANEX is PSPACE-
complete in general (Bylander 1994). In this work, how-
ever, we are primarily interested in planning tasks that have
plans of polynomial length in the representation size of the
task. The representation size ‖Π‖ of a planning task is the
length of a reasonable encoding of Π. This fragment of clas-
sical planning is NP-complete: nondeterministically guess a
polynomially-long action sequence and check sequentially
whether it is a plan for Π.

Let F be a family of tasks and q be a positive polynomial
such that for every task Π in F , there exists a plan π for Π
such that |π| ≤ q(‖Π‖). Then there exists a constant c ∈ N
such that |π| ≤ q(‖Π‖) ≤ O(‖Π‖c) for every task Π in F .
Thus, we say that we are interested in families of tasks with
plans bounded by O(‖Π‖c) for some constant c.1

1Note that c and q depend on the family of tasks F .

Computational Complexity We assume familiarity with
the classes P, NP, and PSPACE, polynomial reductions, and
the concepts of hardness and completeness. We explain the
concepts of interactive proofs and the class IP (Babai 1985;
Goldwasser, Micali, and Rackoff 1985) next. Due to space
limitations, we refer to the seminal textbook by Arora and
Barak (2009) for a more comprehensive introduction.

Intuitively, an interactive proof for a language L and
some common input x is a protocol between a prover P ,
who has unlimited computational power, and a probabilis-
tic polynomial-time verifier V . Prover P claims to have a
proof (sometimes called a witness or certificate) that x ∈ L
and wants to convince V of that. P and V then perform a se-
quence of message exchanges, called rounds, so P can try to
convince V . The verifier, however, does not trust P : it might
be that P is a dishonest prover that does not have a proof for
x ∈ L and is only trying to cheat the verifier.

Let 〈V, P 〉(x) be the output of the interaction between V
and P on a common input x. We write 〈V, P 〉(x) = 1 if the
verifier V accepts the protocol, i.e., if V was convinced by
P that x ∈ L.

A language L is in IP if there exists a protocol with a
polynomial number of rounds satisfying two conditions with
respect to the common input x:

x ∈ L =⇒ ∃P Pr[〈V, P 〉(x) = 1] ≥ 2

3
(1)

x /∈ L =⇒ ∀P Pr[〈V, P 〉(x) = 1] ≤ 1

3
(2)

where Pr[〈V, P 〉(x) = 1] denotes the probability that V ac-
cepts x after interacting with P . In words, if x ∈ L then
P can convince V to accept x with high probability, and if
x /∈ L then P can only make V falsely accept x with low
probability.2

Condition (1) is called completeness, and (2) is called
soundness. Given a language L, if there exists a probabilistic
polynomial-time verifier V and a protocol satisfying (1) and
(2) within a polynomial number of rounds, then L ∈ IP.

In more practical settings, there exists an additional effi-
ciency requirement: P is allowed to use a lot of resources to
find a proof for x ∈ L but has limited resources to prove it to
V . This models the idea that we do not want the verification
of the solution to be as expensive as solving the problem
from scratch. Although IP = PSPACE (Lund et al. 1992;
Shamir 1992), it is unclear whether PSPACE-complete lan-
guages have interactive proofs with this efficiency property.
While languages in NP have very efficient protocols, to the
best of our knowledge, the only known protocols for lan-
guages not in NP (Lund et al. 1992; Shamir 1992; Shen
1992) rely on very powerful provers.

Zero-Knowledge Proofs An interactive proof is called a
zero-knowledge proof if it does not provide a single ad-
ditional bit of information to the verifier, besides whether
x ∈ L or not (Goldwasser, Micali, and Rackoff 1985). Gol-
dreich, Micali, and Wigderson (1986) proved that any deci-
sion problem in NP has a zero-knowledge proof, under the

2Constants 2/3 and 1/3 can be strengthened or weakened without
changing the power of IP. See Arora and Barak (2009) for details.

assumption that one-way functions exist. Later, Ben-Or et al.
(1988) showed that, under the same assumption, every lan-
guage in IP has a zero-knowledge proof.

Formally, zero-knowledge is defined under the simulation
paradigm (Goldreich 2001): a protocol is zero-knowledge if
the verifier can simulate the interaction with the prover on its
own, without the prover. More formally, there should exist a
polynomial-time probabilistic simulator M∗ whose output
distribution is computationally indistinguishable from the
output distribution of the interaction between verifier V and
prover P , denoted 〈V, P 〉(x). In other words, there is no ef-
ficient algorithm that can distinguish between 〈V, P 〉(x) and
the output of M∗ on input x, except with negligible proba-
bility.3 This should also hold for any arbitrary strategy that
verifier V uses, even if it does not follow the protocol.
Definition 2 (Zero-Knowledge Proofs). Given a protocol
between a verifier V and a prover P with common input x,
the protocol is said to be zero-knowledge for some language
L iff for every probabilistic polynomial-time verifier strat-
egy V ∗, there exists a probabilistic polynomial-time simu-
lator M∗ such that when x ∈ L the output distribution of
〈V ∗, P 〉(x) and the output distribution ofM∗ on x are com-
putationally indistinguishable.

Definition 2 asserts that if V could have learned anything
from the protocol, then it could have also learned it by run-
ning the simulator M∗ on x. In simpler terms, if there is an
algorithm M∗ that can imitate the interaction 〈V, P 〉(x), the
verifier V could simply execute this algorithm instead of in-
teracting directly with P . The definition also quantifies over
all possible verifier strategies to guarantee that the proto-
col is zero-knowledge even when the verifier deviates from
the established protocol (i.e., it tries to cheat the prover).
The common way of proving that a protocol is indeed zero-
knowledge is by showing that such a simulator M∗ exists
(e.g., Goldwasser, Micali, and Rackoff 1985; Blum 1986;
Impagliazzo and Yung 1987; Goldreich 2001).

It is important to stress that the simulator must only be
correct when x ∈ L, while there is no requirements when
x /∈ L. This models the idea that the verifier learns nothing
about the proof that x ∈ L, and in the case where x /∈ L
there is nothing to be learned.

Commitment Schemes An important ingredient in zero-
knowledge protocols is the concept of commitment schemes
(Goldreich 2001). Using a commitment scheme, the prover
P can commit to a message while keeping it hidden from
the verifier V . This commitment can be later opened when-
ever P wants to reveal the information of the message to V .
Computationally, a commitment scheme is a function that
produces a commitment string Commit(x) given an object x
and some key Kx ∈ {0, 1}n . The commitment Commit(x)
can be opened using the same key Kx.

Commitment schemes have two important properties: un-
ambiguity and secrecy. A scheme is unambiguous if us-
ing two different keys to commit the same objects always

3A function f(x) is called negligible iff |f(x)| ≤ 1/g(x) for all
positive polynomials g(x) and sufficiently large x. In our case, we
consider that two distributions are computationally indistinguish-
able if the statistical distance between them is negligible.

produces two different commitments; it is secret if given
two objects x and y, their commitments Commit(x) and
Commit(y) are computationally indistinguishable.

We write Commit(x) to represent the commitment of an
object x. We say that the prover P opens or reveals x to
V to indicate that P gives V the key Kx to open x. With
some abuse of notation, we write Commit(L) to indicate the
element-wise commitment of some sequence or set L.

Commitment schemes can be seen as functions to en-
crypt objects such that their original value is only revealed
under demand. In our work, we assume that the function
Commit(·) is unambiguous and secret. Our results hold for
any function following these criteria. For more details on
commitment schemes and concrete examples, we refer to the
canonical book by Goldreich (2001).

Plan Existence Protocol
We now introduce our protocol, ZK-BOUNDEDPLANEX.
With ZK-BOUNDEDPLANEX, a prover P who claims to
know a plan π for Π, with |π| ≤ k ≤ O(‖Π‖c) for some
constant c ∈ N, can convince a verifier V that 〈Π, k〉 ∈
BOUNDEDPLANEX in a polynomial number of rounds,
while not disclosing any knowledge about π. Our protocol
is inspired by the zero-knowledge protocol for Hamiltonian
cycles by Blum (1986), and by the zero-knowledge simula-
tion of computation by Impagliazzo and Yung (1987).

Let us give the high-level idea first. To start, the prover
P transforms the planning task Π into a new task Π̂ where
variables are permuted and actions are made indistinguish-
able. The trick here is that Π̂ still preserves all plans of Π but
actions and variables of Π̂ cannot be easily identified. Next,
P sends Π̂ together with a commitment of π̂ – an obfuscated
version of the original plan π – to V . The prover then poses
two possible options to the verifier: V can either choose to
check the mapping from Π to Π̂ and confirm if the transfor-
mation is valid, or V can check a part of the plan π̂ on its
own.

The verifier V randomly chooses one of the two options.
If V decides to check the transformation, P provides the
transformation function to V , and V simply compares Π to
Π̂, accepting if both are equivalent (otherwise, it rejects); if
V decides to check the plan itself, it selects one random tran-
sition of π̂, P reveals this transition to V , and V computes
locally whether this transition is valid or not. If it is valid, it
accepts; otherwise it rejects.

If π̂ is a valid plan for Π̂, then all transitions in the plan are
valid. Otherwise, at least one transition is invalid (either not
applicable or leads to a different successor state than the one
commited by P) and V has 1/k = 1/q(‖Π̂‖) chance of spotting
it, where q(‖Π̂‖) ≤ O(‖Π̂‖c) is a positive polynomial as
previously defined.

There are some other details that V also needs to take care
of. For example, it needs to verify that π̂ starts at the initial
state and ends at a goal state. We detail all these steps next.
P claims to have a plan π for Π but V cannot be sure that

this π is indeed a plan – it can be some random sequence
of actions, if P is a dishonest prover. We thus say that π

is a valid plan if it is indeed a plan, and we say that π is
an invalid plan if it is just some sequence of actions which
does not lead from the initial state to some goal state – ei-
ther because it is not applicable in the initial state, because
it does not lead to the goal, or because a single transition
is invalid. Similarly, we extend this notion to transitions: a
transition (si−1, ai, si) is invalid if si−1JaiK is undefined or
si−1JaiK 6= si.

ZK-BOUNDEDPLANEX: Step-by-Step
We formalize each step of our protocol next. A concrete ex-
ample is available as a technical report (Corrêa, Büchner,
and Christen 2022).

Step 0. P and V have as common input 〈Π, k〉, where Π =
〈V,A, I, G〉 and k ≤ O(‖Π‖c) – for some constant c ∈ N.
The prover P claims to know a plan π for Π with |π| ≤ k.

Step 1. P transforms Π into some new task Π̂ so it is com-
putationally hard for V to correctly identify actions and vari-
ables. To do this, P transforms the task in five different
phases: (a) add a “dummy” action to the task that can be ap-
plied in any state without changing it; (b)–(c) make actions
indistinguishable by padding preconditions and effects until
they all have the same structure; (d) permute truth values of
variables to hide their identity; and (e) define specific initial
and goal states to allow deterministically checking that the
plan starts from the expected initial state and ends in a valid
goal state. We detail each phase next.

Starting from Π, each of the following phases creates a
new planning task that is a modification of the previous one.
We write Πa for the task created in phase (a), Πb for the task
created in phase (b), and so on.

(a) P introduces a dummy action adummy, where

pre(adummy) = eff(adummy) = {}

and then creates the planning task Πa = 〈V,Aa, I, G〉,
where Aa = A ∪ {adummy}.
P then uses the action adummy to pad any plan π with
|π| < k until it has length k. This allows our protocol to
decide 〈Π, k〉 ∈ BOUNDEDPLANEX for tasks with plans
strictly smaller than k while not revealing the length of
the plan. The key property of adummy is, that its applica-
tion leaves the given state unchanged and the existence
of adummy does therefore not affect plan existence.

(b) To ensure that all actions look similar, every action must
1) have the same number of mutual variables across pre-
condition and effect and 2) precondition (resp. effect)
must have the same number of literals. We delay the sec-
ond requirement to part (c).
More formally, let m(a) = |vars(pre(a)) ∩ vars(eff(a))|
denote the number of mutual variables in the precondi-
tion and effect of a given action a. Our goal in this part
of the transformation is to obtain a set of actionsAb such
that for every pair of action a1, a2 ∈ Ab it holds that
m(a1) = m(a2).
To achieve this, let m∗ = maxa∈Aa m(a). For every ac-
tion a ∈ Aa, introduce n = m∗ − m(a) new variables

ma
1 , . . . ,m

a
n, and two new actions a⊥ and a> such that

pre(a⊥) = pre(a) ∪ {¬ma
i |1 ≤ i ≤ n},

eff(a⊥) = eff(a) ∪ {ma
i |1 ≤ i ≤ n},

pre(a>) = pre(a) ∪ {ma
i |1 ≤ i ≤ n}, and

eff(a>) = eff(a) ∪ {¬ma
i |1 ≤ i ≤ n}.

These actions change all newly introduced variables in
unison, which is also the reason why P needs to dupli-
cate the number of actions: one copy to simulate a in case
they are all⊥, and one copy to simulate a in case they are
all >. Note that no other action affects the variables ma

i
and consequently all ma

i always have the same value >
or ⊥. The initial state I remains unchanged because P
considers all newly introduced variables to be⊥ initially,
as they are not in I . The goal G also remains unchanged
because the newly introduced variables do not influence
the reachability of G. In summary, this first transforma-
tion leads to Πb = 〈Vb,Ab, I, G〉 where

Vb = V ∪
⋃

a∈Aa

{ma
i |1 ≤ i ≤ m∗ −m(a)} and

Ab = {a⊥ | a ∈ Aa} ∪ {a> | a ∈ Aa}.

This phase can be done in O(|V||A|) steps and increases
the representation size of the task by O(|V||A|).

(c) We continue by padding the action preconditions and ef-
fects so that all actions have the same number of pre-
conditions and the same number of effects. For a ∈ Ab,
let p(a) = |pre(a)| and e(a) = |eff(a)|. Consider Πb
as described above and let p∗ = maxa∈Ab p(a) and
e∗ = maxa∈Ab e(a). For every action a ∈ Ab, intro-
duce m = p∗ − p(a) new variables pa1 , . . . , p

a
m and

n = e∗ − e(a) new variables ea1 , . . . , e
a
n. Furthermore,

define ac such that

pre(ac) = pre(a) ∪ {¬pai | 1 ≤ i ≤ m} and
eff(ac) = eff(a) ∪ {¬eai | 1 ≤ i ≤ n}.

In doing so, all newly introduced variables only occur as
negative literals after this transformation of the planning
task. By leaving them out of the initial state as well, P
ensures that all actions remain applicable and all effects
can only make them false, so they never change their
value. The goal also remains unchanged so the newly
introduced variables have no influence on the solvabil-
ity of the task. In summary, this transformation leads to
Πc = 〈Vc,Ac, I, G〉 where

Vc = Vb ∪
⋃

a∈Ab

{pai | 1 ≤ i ≤ p∗ − p(a)}

∪
⋃

a∈Ab

{eai | 1 ≤ i ≤ e∗ − e(a)} and

Ac = {ac | a ∈ Ab}

This phase also takes O(|V||A|) steps and increases the
task representation by the same amount.

(d) To hide the identity of the original Π in its transformed
version Πc, P creates a permuted version of Πc using
a uniformly chosen function ρ that randomly permutes
variables and their truth value (i.e., positive to negative
and vice-versa) at the initial state I . The truth value of
each variable is also permuted consistently in every place
of occurrence (e.g., goal and actions). With some abuse
of notation, we write ρ(Vc), ρ(Ac), ρ(I), and ρ(G) to de-
note the permuted versions of Vc,Ac, I , andG according
to ρ.
Let Πd = 〈Vd,Ad, Id, Gd〉 where

Vd = ρ(Vc),

Ad = ρ(Ac),

Id = ρ(I), and
Gd = ρ(G).

This phase does not influence the size of the task repre-
sentation but takes time O(|Vc|) which is polynomial in
|V|, as discussed in the previous transformation.

(e) In this last transformation, the task is changed to have a
specific initial state and a unique goal state. To achieve
this, P introduces two new variables vI and v∗, and two
new actions aI and a∗, where

pre(aI) = {vI} ∪ {¬v | v ∈ Vd},
eff(aI) = {¬vI} ∪ Id,

pre(a∗) = {¬vI} ∪Gd, and
eff(a∗) = {v∗} ∪ {¬v | v ∈ Vd}.

P changes the initial state to Ie = {vI} and the goal to
Ge = {v∗} ∪ {¬v | v ∈ Vd}. To ensure that only aI is
applicable in Ie, P adds ¬vI to the preconditions of all
actions and therefore defines ae for all a ∈ Ad where

pre(ae) = pre(a) ∪ {¬vI} and
eff(ae) = eff(a).

In summary, this last transformation leads to Πe =
〈Ve,Ae, Ie, Ge〉 where

Ve = Vd ∪ {vI , v∗} and
Ae = {ae | a ∈ Ad}.

This transformation can be done in polynomial time, too.

Let Π̂ = 〈V̂, Â, Î, Ĝ〉 where V̂ = Ve, Â = Ae, Î = Ie,
and Ĝ = Ge. The task Π̂ is our transformed task and it
will be used through the rest of the protocol. The overall
transformation from Π to Π̂ can be done in time polynomial
in ‖Π‖, and Π̂ is only polynomially larger than Π. In the
rest of the paper, we say that σ is a transformation function
such that σ(Π) = Π̂. Note that σ can be defined simply by
describing each step taken by P , which takes polynomial
time and space.
P transforms the plan π for Π of length |π| ≤ k into a

plan π̂ = 〈a1, . . . , ak+2〉 for Π̂. This transformation is fairly
straightforward so, due to space limits, we do not discuss it
here. However, we note that the new initial and goal states
in Π̂ imply that a1 = aI and ak+2 = a∗. As these two

actions were not in the original task Π, π̂ has two steps more
than π. To simplify notation, let ` = k + 2 and thus π̂ =
〈a1, . . . , a`〉.
Step 2. P creates the sequence S of states:

S = 〈s0, . . . , s`〉,

where s0 and s` correspond to our unique initial and goal
states, respectively, and si−1JaiK = si for all 1 ≤ i ≤ `. In
words, sequence S corresponds to the states visited by π̂, if
π̂ is indeed a valid plan.

Next, P commits the task Π̂ and each element in π̂ and
S individually using some arbitrarily chosen commitment
scheme. Recall that we write Commit(x) to represent the
encrypted commitment of some object x, and Commit(L)
represents the element-wise commitment of some sequence
L. With some abuse of notation, we define Commit(Π̂) =

〈Commit(V̂),Commit(Â),Commit(Î),Commit(Ĝ)〉 where
each V̂, Â, Î , and Ĝ are also commited element-wise.

Finally, P sends Commit(Π̂), Commit(π̂), and
Commit(S) to V .

Step 3. If |Commit(π̂)| > `, the verifier rejects the protocol;
otherwise it picks a random bit b ∈ {0, 1} and sends it to P .

If b = 0, P reveals the function σ to V together with all
keys to open Commit(Π̂). V opens Commit(Π̂) to obtain Π̂

and checks if σ(Π) = Π̂. If this is the case, V accepts the
protocol; otherwise it rejects.

If b = 1, P reveals s0 and s` from Commit(S) =
〈Commit(s0), . . . ,Commit(s`)〉 to V .

Step 4. V verifies that s0 = {vI}, the expected initial state,
and s` = {v∗}, the expected goal state. If either of these
comparisons fails, V rejects the protocol. Otherwise, it uni-
formly chooses an integer m ∈ {1, . . . , `} by flipping log `
fair coins and sends m to P . The value of m corresponds to
the m-th transition of π̂ that V wants to verify on its own.

Step 5. The prover reveals sm−1 and sm from Commit(S)

and am from Commit(π̂). It also reveals V̂ and am from
Commit(Â).4 Finally, V compares the action am in π̂ with
the action obtained from Â, which should be the same, and
verifies that all variables used in sm−1, am and sm are in-
deed in V̂ . If any of these checks fail, V rejects the protocol.

Last, V checks locally if sm−1JamK = sm. If this also
passes, V accepts the protocol. Otherwise, V rejects it.

All computations of the protocol can be done in
polynomial-time by the prover and the verifier. More explic-
itly, the verifier needs to pick log ` random bits, transform
the task and compare the resulting task, compare two states
to their expected value, and check a transition locally. This
can all be easily done in polynomial-time by a probabilistic
algorithm.

4Note that P reveals two copies of am: one from the transition
and one from the set of actions Â. This is done so the verifier can
be sure that the action used in the transition is indeed part of the
task Π̂.

In fact, all the computations performed by the prover P
are also polynomial. This means that any prover that sim-
ply happens to have the solution (e.g., it obtained this infor-
mation from a third-party) could participate in the protocol.
Note that this is only possible because the transformations
done in Step 1 can also be applied to the plan.

The protocol also only needs a constant number of
rounds. Together, the constant number of rounds and the
polynomial-time steps make ZK-BOUNDEDPLANEX effi-
cient enough to be performed in practice.

Completeness and Soundness
We first analyze the completeness and soundness of our pro-
tocol. Throughout the rest of the paper, let x = 〈Π, k〉.
We rewrite Equations (1) and (2) in terms of our language
BOUNDEDPLANEX:

x ∈BOUNDEDPLANEX =⇒ ∃P Pr[〈V, P 〉(x) = 1] ≥ 2

3

x /∈BOUNDEDPLANEX =⇒ ∀P Pr[〈V, P 〉(x) = 1] ≤ 1

3

where the first implication refers to the protocol’s complete-
ness and the second to the protocol’s soundness.

We discuss completeness first. The verifier can only re-
ject a valid input 〈Π, k〉 in one of the following cases (1) P
provides an invalid transformation function σ (Step 3); (2) π̂
does not start in sI = {vI} or does not end in s∗ = {v∗}
(Step 4); (3) one of the transitions in π̂ is invalid (Step 5).
Under the assumption of an all-powerful prover, any honest
prover P that can compute a plan can also trivially satisfy
the cases above. Hence, our protocol has completeness of

Pr[〈V, P 〉(x) = 1] = 1.

For soundness, we denote by P an arbitrary dishonest
prover that claims to have a plan for Π but in reality it does
not. Consider how P can try to trick V into accepting x al-
though x /∈ BOUNDEDPLANEX.

First, P can try to trick V by performing a wrong task
transformation in Step 1. The verifier V would then reject it
with probability 1/2, the probability of b = 0 in Step 3. By
repeating the protocol t times, the probability of V accepting
when x /∈ BOUNDEDPLANEX decreases to (1−1/2)t which
is smaller than 1/3 when t ≥ 2.

Second, P can perform a correct task transformation in
Step 1 but provide an invalid plan in Step 2. We write π
to denote this invalid plan. Note that the plan π is invalid
when there is at least one wrong transition in π. This means
that for some transition (si−1, ai, si), the action ai is either
not applicable in si−1 or it does not lead to si. The verifier
can only spot this mistake if b = 1 in Step 3 and m = i in
Step 5. Hence, the probability of V accepting x is 1−1/2`. By
repeating the protocol 3` times, this probability decreases to
(1 − 1/2`)3` < 1/3 since ` ≥ 2 by definition. As ` = k + 2
and k is polynomial in ‖Π‖, the protocol only needs to be
repeated a polynomial number of times.

Note that, in practice, P can optimize parts of the protocol
in the case it needs to be repeated several times. For exam-
ple, steps (a)–(c) in Step 1 can be computed only once and

be cached for future reuse. As Step 1 is the most expensive
step of the protocol – although it still runs in polynomial
time – this caching can be very beneficial in practice.

Proof of Zero-Knowledge
We now prove that the ZK-BOUNDEDPLANEX protocol
is zero-knowledge. We need to prove that there exists a
polynomial-time probabilistic simulator M∗ with an output
distribution that is computationally indistinguishable from
the output distribution of 〈V ∗, P 〉(x), where V ∗ is a proba-
bilistic polynomial-time verifier with an arbitrary strategy
(i.e., it does not need to follow the protocol). Recall that
the zero-knowledge definition is conditioned to cases where
the input x belongs to the language, so M∗ only needs to
produce an output that is computationally indistinguishable
from the output of 〈V ∗, P 〉(x) for the case of an honest
prover P .

Our simulation relies on the common technique that the
simulatorM∗ guesses the random choices of V ∗ in advance.
In our case, M∗ guesses the values of b and m. If it does not
guess correctly, then it simply restarts the simulation (e.g.,
Blum 1986; Arora and Barak 2009). The trick here is that
M∗ only needs to restart the simulation a polynomial num-
ber of times, and it only outputs once it guesses b and m
correctly. Although it is possible that an exponential (for ex-
ample) number of restarts is needed, such corner cases occur
with negligible probability, so they are not sufficient to dis-
tinguish both distributions. In such cases, M∗ can just abort
the process entirely after a certain number of steps.

Next, we explain how M∗ works. We consider that M∗
executes V ∗ as a subroutine, so it can send messages and
simulate V ∗ independently of its strategy. The simulation
works as follows: M∗ begins by randomly guessing b′ ∈
{0, 1} and m′ ∈ {1, . . . , `}. It then starts to act as a prover
P by generating Π̂ = 〈V̂, Â, Î, Ĝ〉 as in Step 1 using some
function σ. As previously argued, this transformation takes
polynomial time so M∗ can do it within its time limits. The
only difference to Step 1 is thatM∗ does not compute a plan
π̂ for Π̂.

It then produces π̂ and S but differently than P would,
as M∗ does not know a plan π̂. It starts with the sequence
of states S and it splits this procedure into two cases based
on whether m′ ∈ {1, `} or not. First, assume m′ /∈ {1, `}.
Let a′ be a randomly selected action of Π̂ and let s′ be a
state such that s′ |= pre(a′), vI /∈ s′, v∗ /∈ s′, and all other
variables in V̂ are set to true or false uniformly at random.
Then M∗ defines S = 〈s0, . . . , s`〉 where s0 = sI = {vI},
s` = s∗ = {v∗}, sm′−1 = s′, sm′ = s′Ja′K, and all other
states in S are chosen randomly (by uniformly assigning
each variable to true or false at each state). The sequence
π̂ is defined as π̂ = 〈a1, . . . , a`〉 where am′ = a′ and all
other actions are chosen randomly from Â. Note that π̂ gen-
erated by M∗ is (very) probably not a valid plan, but we use
the same notation and terminology for simplicity.

When m′ ∈ {1, `}, instead of choosing a′ randomly, M∗
must select a specific action according to the value of m. If
m′ = 1, then a1 = aI , and we define s0 = sI and s1 =
s0JaIK in S. If m′ = `, then a` = a∗, s` = s∗, s`−1 is

defined such that s′ |= pre(a∗), vI , v∗ /∈ s′ and all other
variables are set to true or false uniformly at random. The
rest of the procedure is the same.

After that, M∗ commits π̂, S, and Π̂ and sends them to
V ∗, as P would do at the end of Step 2. V ∗ picks b ∈ {0, 1}
and sends to M∗. If b = b′, M∗ continues the simulation;
otherwise it restarts it.

In the case where b = b′ = 0, M∗ can send V ∗ the func-
tion σ used to transform Π into Π̂ so V ∗ can check that
σ(Π) = Π̂. This can be trivially done by M∗ as it created σ
on its own, so V ∗ will accept the protocol. In this case, the
interaction between V ∗ and P and the interaction between
V ∗ and M∗ are indistinguishable.

In the case where b = b′ = 1, M∗ continues simulating
P (by sending the keys to s0, s`, etc.) until V ∗ sends m to
M∗. If m 6= m′, M∗ restarts the simulation. Otherwise, it
reveals the m-th transition to V ∗, as P would do. Since this
transition was constructed in a way that it is guaranteed to
be valid, V ∗ will accept the protocol.

The key idea of the simulation is that the only transition
a verifier can view is the one they randomly choose based
on m. However, M∗ only knows that the m′-th transition
is valid. Therefore, M∗ can only guarantee that V ∗ accepts
when m = m′. Otherwise, it needs to restart the simulation.

Before proving that the protocol ZK-BOUNDEDPLANEX
is zero-knowledge, we prove some lemmas.

Lemma 1. Commit(Π̂),Commit(π̂), and Commit(S) com-
puted by M∗ are computationally indistinguishable from
Commit(Π̂),Commit(π̂), and Commit(S) computed by a
prover P .

Proof. Note that Commit(Π̂) is computed identically byM∗
and P , so they are trivially indistinguishable. Commit(π̂)
and Commit(S) are computed differently (M∗ generates
random states and actions, while P uses the plan for that)
but under the assumption of a commitment scheme that is
hiding and binding, they are computationally indistinguish-
able when encrypted.

Lemma 2. The probability that b = b′ and m = m′ is at
least 1/2`.

Proof. Given Lemma 1 and the fact that the elements in
Commit(S) are also indistinguishable between themselves
(analogously to Commit(π̂)), we can assume that a proba-
bilistic polynomial-time V ∗ chooses b andm in an oblivious
manner (i.e., independent of the content of the encrypted in-
formation). For simplicity, we can then assume that it selects
b and m even before the protocol with M∗ or P has started.
Thus, it follows that Pr[b = b′ and m = m′] = 1/2`.

Lemma 3. Let (sm−1, am, sm) be the single transition
revealed to V ∗. Then, (sm−1, am, sm) computed by M∗

is computationally indistinguishable from (sm−1, am, sm)
computed by a prover P .

Proof. Recall that the transformation of Step 1 makes ac-
tions indistinguishable (except for aI and a∗) by padding
the actions and permuting variables and truth values. Thus,
the action am revealed to V ∗ is indistinguishable from any

other action – and so are states sm−1 and sm. However,
(sm−1, am, sm) was computed differently by M∗ and by P .
When computed by P , it is a transition occurring in π̂. When
computed by M∗, it is a randomly selected action in Â with
randomly generated states sm−1 and sm. But since variables
are permuted according to a function chosen uniformly at
random by both M∗ and P , both (sm−1, am, sm) computed
by M∗ and (sm−1, am, sm) computed by a prover P are
computationally indistinguishable to each other as well.

We are now set to prove that ZK-BOUNDEDPLANEX is
indeed a zero-knowledge protocol.

Theorem 4. The protocol ZK-BOUNDEDPLANEX is zero-
knowledge.

Proof. In other words, we want to prove that the output
of the interaction between V ∗ and M∗ is indistinguish-
able from the output of the interaction between V ∗ and P
for any probabilistic polynomial-time verifier strategy V ∗,
when conditioned to cases where x ∈ BOUNDEDPLANEX,
and that M∗ runs in probabilistic polynomial time.

The fact that the interactions are computationally indis-
tinguishable follows directly from Lemmas 1 and 3, as these
are the only messages revealed by the prover to V ∗.

It remains to show that M∗ runs in probabilistic polyno-
mial time. As shown in Lemma 2, Pr[b = b′ and m = m′] =
1/2` and thus the expected number of restarts M∗ makes un-
til b = b′ andm = m′ is 2`. Therefore, the expected running
time of M∗ is 2` t(|x|), where t(|x|) is the running time of
V ∗ with input x. There is a very small probability that the
algorithm needs more than polynomial number of restarts.
To solve this, M∗ can output some default value after |x|
restarts. This adds 1/2 (`−1/`)

|x| statistical distance between
the distributions, but this is negligible as 1/2 (`−1/`)

|x| ≤
1/q(|x|) for any positive polynomial q and sufficiently large
|x|. As ` ≤ O(‖Π‖c) for some constant c, we have that
2` t(|x|) ≤ O(‖Π‖c)t(|x|) and since t(|x|) is polynomial
in ‖Π‖, too, we have O(‖Π‖)t(|x|) ≤ O(poly(‖Π‖)).

Conclusion
We introduce ZK-BOUNDEDPLANEX, a zero-knowledge
protocol to prove plan existence for tasks with polynomially-
long plans. At the core of our protocol lies a transformation
of the original planning task Π to the new task Π̂, where
variables are permuted to hide their identities and actions
are made indistinguishable. After the prover commits to Π̂
and plan π̂, the verifier makes a probabilistic choice to either
check the task transformation or the transformed plan. In the
latter case, the verifier checks a single transition as well as
the initial and goal states of π̂. If all checks pass, the verifier
accepts the protocol.

ZK-BOUNDEDPLANEX runs in a constant number of
rounds, with every step being computable in time polyno-
mial in ‖Π‖; the verifier has high confidence that a plan
exists after repeating the protocol a polynomial number of
times, while the prover is absolutely sure that no knowledge
about the plan is revealed.

Acknowledgments
We especially thank André G. Pereira for giving us feedback
on earlier versions of this work, and Adi Shamir for point-
ing us to relevant literature on zero-knowledge proofs. We
also thank Simon Dold and Malte Helmert for helpful dis-
cussions.

This work was funded by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan). Furthermore, this research was
also partially supported by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme un-
der grant agreement no. 952215.

References
Arora, S.; and Barak, B. 2009. Computational Complexity:
A Modern Approach. Cambridge University Press.
Babai, L. 1985. Trading Group Theory for Randomness. In
Sedgewick, R., ed., Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing (STOC ’85), 421–
429. ACM Press.
Ben-Or, M.; Goldreich, O.; Goldwasser, S.; Håstad, J.; Kil-
ian, J.; Micali, S.; and Rogaway, P. 1988. Everything Prov-
able is Provable in Zero-Knowledge. In Goldwasser, S., ed.,
Proceedings of the Eighth Annual International Cryptology
Conference (CRYPTO 1988), volume 403 of Lecture Notes
in Computer Science, 37–56. Springer.
Blum, M. 1986. How to Prove a Theorem So No One Else
Can Claim It. In Proceedings of the International Congress
of Mathematicians (ICM 1986), volume 2, 1444–1451.
Brafman, R. I. 2015. A Privacy Preserving Algorithm
for Multi-Agent Planning and Search. In Yang, Q.; and
Wooldridge, M., eds., Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015),
1530–1536. AAAI Press.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69(1–2): 165–204.
Corrêa, A. B.; Büchner, C.; and Christen, R. 2022. Zero-
Knowledge Proofs for Classical Planning Problems: Con-
crete Example. Technical Report CS-2022-002, University
of Basel, Department of Mathematics and Computer Sci-
ence.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Goldreich, O. 2001. The Foundations of Cryptography —
Volume 1: Basic Techniques. Cambridge University Press.
Goldreich, O.; Micali, S.; and Wigderson, A. 1986. Proofs
that Yield Nothing But their Validity and a Methodology of
Cryptographic Protocol Design (Extended Abstract). In Pro-
ceedings of the Twenty-Seventh Annual Symposium on Foun-
dations of Computer Science (FOCS 1986), 174–187. IEEE
Computer Society.
Goldwasser, S.; Micali, S.; and Rackoff, C. 1985. The
Knowledge Complexity of Interactive Proof-Systems (Ex-
tended Abstract). In Sedgewick, R., ed., Proceedings of the

Seventeenth Annual ACM Symposium on Theory of Comput-
ing (STOC ’85), 291–304. ACM Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Impagliazzo, R.; and Yung, M. 1987. Direct Minimum-
Knowledge Computations. In Pomerance, C., ed., Proceed-
ings of the Eighth Annual International Cryptology Confer-
ence (CRYPTO 1987), volume 293 of Lecture Notes in Com-
puter Science, 40–51. Springer.
Lund, C.; Fortnow, L.; Karloff, H. J.; and Nisan, N. 1992.
Algebraic Methods for Interactive Proof Systems. Journal
of the ACM, 39(4): 859–868.
Shamir, A. 1992. IP = PSPACE. Journal of the ACM, 39(4):
869–877.
Shen, A. 1992. IP = PSPACE: Simplified Proof. Journal of
the ACM, 39(4): 878–880.
Torreño, A.; Onaindia, E.; Komenda, A.; and Štolba, M.
2017. Cooperative Multi-Agent Planning: A Survey. ACM
Computing Surveys, 50(6): 1–32.
Tožička, J.; Štolba, M.; and Komenda, A. 2017. The Limits
of Strong Privacy Preserving Multi-Agent Planning. In Bar-
bulescu, L.; Frank, J.; Mausam; and Smith, S. F., eds., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling (ICAPS 2017), 297–
305. AAAI Press.

